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1 Related Works

Unlike the well-defined matrix rank, there is currently no universally accepted definition for tensor rank. In this part, we
will briefly introduce three common definitions of tensor rank based on different decomposition techniques: Canonical
Polyadic (CP) Decomposition [1, 2], Tucker Decomposition [3], and methods based on t-SVD [4, 5, 6, 7, 8, 9].

It is worth noting that from an equivalent definition of matrix rank, a rank r matrix can be written as the sum of r
rank-one matrix. Inspired by that, Kolda and Bader [10] have proposed CP rank, i.e., rankcp(·), defined on tensor
rank-one decomposition (CP Decomposition):

rankcp(X ) = min{R|X =

R∑
r=1

gr,r,··· ,ru
(1)
r ◦ u(2)

r ◦ · · · ◦ u(h)
r ,u(j)

r ∈ RIj for j = 1, 2, · · · , h} (1)

for tensor X ∈ RI1×I2×···×Ih . We can see from (1) that the definition of matrix rank is a special case of CP rank. But
solving (1) is time-consuming even for small tensor when h ≥ 3.

As the computation of CP rank is NP-hard and greatly restricts its application in tensor recovery, various Tucker
Decomposition-based methods for defining tensor rank have been proposed and extensively studied than CP rank
[10]. Given A ∈ RI1×I2×···×Ih , the Tucker Decomposition of A is written as A = G ×1 U1 ×2 U2 ×3 · · · ×h Uh,
where G ∈ RR1×R2×···Rh , and Uk ∈ RIk×Rk for k = 1, 2, · · · , h. Given rank(A(k)) for all k, we can obtain
the decomposition by the higher-order singular value decomposition (HOSVD) [11], where rank(A(k)) = Rk for
k = 1, 2, · · · , h. Therefore, the Tucker rank of tensor A is defined as

ranktc(A) = (rank(A(1)), rank(A(2)), · · · , rank(A(h)),
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which is also known as multilinear rank and n-rank. Based on the Tucker rank, Gandy et al. given a new rank of the tensor
data defined as

∑h
n=1 rank(A(n)) [12]. Furthermore, considering the difference of the low rankness along different

dimensions of tensor data, [13] give a weighted sum of the ranks of the unfolding matrices
∑h

n=1 αnrank(A(n)), where
the weights αn(n = 1, 2, · · · , h) satisfy

∑h
n=1 αn = 1 and play an important role in the newly defined rank. However,

the best choice for the weights is hard to know if without any prior. Thus, a new tensor rank based on the maximum rank
of a set of unfolding matrics is proposed to promote the low-rankness of unfolding matrics of the recovered tensor [14].

Recently, there has been a growing interest in tensor rank by using t-SVD [15, 16, 4]. This approach defines rank based
on the Singular Value Decomposition (SVD) of frontal slices of the tensor resulting from invertible transforms applied
along a specific dimension (known as t-SVD). This approach is widely employed in tensor recovery, as they can better
utilize the smoothness priors in tensor data due to the use of transforms such as DFT. For example, [15] introduced
a tensor tubal rank based on the Discrete Fourier Transform (DFT) for three-order tensors. It counts the number of
non-zero tensor tubes in the singular value tensor obtained by performing frontal-slices-wise SVD of the transformed
tensor. Similarly, [16] defined tensor average rank for three-order tensors based on DFT, which averages the ranks of
frontal slices of the transformed tensor and provided theoretical guarantees for exact recovery using the convex hull
of tensor average rank. As noted in [16], the low tensor average rank assumption for tensor data can be more easily
satisfied in the real world than the low-rank assumption employed in the tensor tubal rank, CP rank, and tucker rank.
Specifically, the tensor average rank of any three-order tensor A satisfied the following inequation

ranka(A) ≤ max ranktc(A) ≤ rankcp(A), (2)

where ranktc(A) and rankcp(A) are the Tucker rank [17] and CP rank [10] of A, respectively. Employing a similar
idea to tensor average rank, a new rank based on real invertible transforms has been given in [4], and defined as
rankL(A) = 1

I3

∑I3
i3=1 rank([A ×3 L]:,:,i3), where L is a fixed real invertible transform, such as Discrete Cosine

Matrix (DCM) and Random Orthogonal Matrix (ROM), that satisfies LTL = LLT = ℓL, and ℓL is a constant.
To handle the higher order tensor case, in [6], the slice-wise low rankness of L(A) is considered, where L(A) =

X ×3L3×4 · · ·×hLh, LT (A) = X ×hL
T
h ×h−1 · · ·×3L

T
3 , and LT (L(I)) = L(LT (I)) = ℓLI for given invertible

transforms {Lk}hk=3. Considering the difference of tensor low-rankness across different dimensions of the tensor, [18]
give WSTNN, which is defined as the weighted sum of the tensor average rank of all

(
h
2

)
mode-k1k2 unfolding tensor.

However, it will become impractical as the tensor order h increases. Besides, the weight parameter tuning can also be
a challenge. These t-SVD-based methods utilize the smoothness priors in tensor data better than the other methods
due to the use of transforms such as DFT, but it is also exactly why they are sensitive to non-smooth changes and slice
permutations of tensor data. [19] proposed a solution to address the slice permutation issue in DFT-based methods by
minimizing a Hamiltonian circle, though it is limited to DFT. Moreover, the methods based on t-SVD introduce more
variables and weight parameters compared to CP and Tucker rank methods.

2 TDSL (Algorithm 2)

3 The Proof of Property 2

Proof. (i) We can conclude that both the tensor U1 norm and tensor U∞ norm are convex due to the convexity properties
of the l1-norm and ∞-norm, respectively.

(ii)

sup
∥B∥U,∞≤1

⟨A,B⟩ = sup
∥B×1Û1×2···×hÛh∥∞≤1

⟨A,B⟩

= sup
∥B×1Û1×2···×hÛh∥∞≤1

〈
A×1 Û1 ×2 · · · ×h Ûh,B ×1 Û1 ×2 · · · ×h Ûh

〉
.

Let B̂ = B ×1 Û1 ×2 · · · ×h Ûh be any tensor. Then we have

sup
∥B̂∥∞≤1

〈
A×1 Û1 ×2 · · · ×h Ûh, B̂

〉
= ∥A×1 Û1 ×2 · · · ×h Ûh∥1 = ∥A∥U,1. (3)

(iii) The proof is completed in the following two steps, utilizing the properties of conjugate functions presented in
[20, 21], i.e., the conjugate of the conjugate, ϕ∗∗

0 , is the convex envelope of a given function ϕ0 : C → R. For given
function ϕ0, the conjugate ϕ∗

0 of the function ϕ0 is defined as ϕ∗
0(y) = sup{⟨y, x⟩ − ϕ0(x)|x ∈ C}.
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Algorithm 2: Tensor Decomposition Based on Slices-Wise Low-Rank Prior (TDSL)

Input: A ∈ RIk1
×Ik2

×···×Ikh , {Ûkn}sn=3, and r, where 1 ≤ ki ̸= kj(if i ̸= j) ≤ h
Output: Z1, {Ukn}hn=s+1.
1. Ā = A×k3

Ûk3
· · · ×ks

Ûks

while not converged do
2. Calculate the slices-wise SVD for Ā×ks+1 U

(t)
ks+1

· · · ×kh
U

(t)
kh

by computing SVD of its all slices along the
(k1, k2)-th mode: for all 1 ≤ ik3 ≤ Ik3 , ..., 1 ≤ ikh

≤ Ikh
, we have

[Ā×ks+1
U

(t)
ks+1

· · · ×kh
U

(t)
kh
]:,:,ik3

,··· ,ikh
= [Ū ]:,:,ik3

,··· ,ikh
[S̄]:,:,ik3

,··· ,ikh
[V̄ ]T:,:,ik3

,··· ,ikh
.

3. Calculate Z(t+1)
1 by [Z1]

(t+1)
:,:,ik3

,··· ,ikh
= [Ū ]:,1:r,ik3

,··· ,ikh
[S̄]1:r,1:r,ik3

,··· ,ikh
[V̄ ]T:,1:r,ik3

,··· ,ikh

4. Compute U
(t+1)
kn

for all s+ 1 ≤ n ≤ h by U
(t+1)
kn

= UV T , where U and V are obtained by SVD for
[Z1](kn)Y

T
(kn), i.e., [Z1](kn)Y

T
(kn) = USV T , and

Y = Ā×ks+1 U
(t+1)
ks+1

· · · ×kn−1 U
(t+1)
kn−1

×kn+1 U
(t)
kn+1

· · · ×kh
U

(t)
kh

.

3. Check the convergence conditions: ∥Z(t+1)
1 −Z(t)

1 ∥∞ < ε, ∥U (t+1)
kn

−U
(t)
kn
∥∞ < ε for all s+ 1 < n ≤ h;

4. t = t+ 1.
end while

Step1. Computing the conjugate of sparsity-based tensor U0, ϕ∗.

ϕ∗(B) = supA∈S ⟨B,A⟩ − ∥A∥U,0 =sup∥A∥U,∞≤1 ⟨B,A⟩ − ∥A×1 Û1 ×2 · · · ×h Ûh∥0
(Let Â = A×1 Û1 ×2 · · · ×h Ûh be any tensor.)

=sup∥Â∥∞≤1

〈
B ×1 Û1 ×2 · · · ×h Ûh, Â

〉
− ∥Â∥0

=

{
0, ∥B∥U,∞ ≤ 1;

∥(B ×1 Û1 ×2 · · · ×h Ûh, 1)+∥1, otherwise.

Step2. Computing the conjugate of ϕ∗, ϕ∗∗. Defining

f(A0) =

{
0, ∥A0∥∞ ≤ 1;

∥(A0, 1)+∥1, otherwise,

we have

ϕ∗∗(C) = supB ⟨C,B⟩ − ϕ∗(B) =supB

〈
C ×1 Û1 ×2 · · · ×h Ûh,B ×1 Û1 ×2 · · · ×h Ûh

〉
− ϕ∗(B)

(Let B̂ = B ×1 Û1 ×2 · · · ×h Ûh be any tensor.)

=supB̂

〈
C ×1 Û1 ×2 · · · ×h Ûh, B̂

〉
− f(B̂) = ∥C∥U,1

over the set S.

4 The proof of Theorem 1

Without loss of generality, let us consider

min
Z,UT

k Uk=I(k=s+1,··· ,h)
∥Z∥U,1 s.t. ΨI(M) = Z ×s+1 U

T
s+1 · · · ×h UT

h + E, (4)

where U(Z) = Z ×1 U1 · · · ×s U s.

La(Z, {Uk}hk=s+1,E,Y , {Y k}hk=s+1,W)

=∥Z∥U,1 +
〈
ΨI(M)−Z ×h UT

h ×2 · · · ×s+1 U
T
s+1 − E,Y

〉
+

h∑
k=s+1

〈
UT

kUk − I,Y k

〉
+ ⟨ΨI(E),W⟩ (5)
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From (5), i.e., the Lagrangian function of (4), we can get the following KKT conditions by the first order optimality
conditions for (4): 

ΨI(M)−X − E = 0;

Y ×s+1 U s+1 ×s+2 · · · ×h Uh ∈ ∂∥Z∥U,1;

UT
kUk = I for k = s+ 1, s+ 2, · · ·h

−F (k)(C(k))
T +Uk(Y k + Y T

k ) = 0;

ΨI(E) = 0;

−ΨIc(Y) = 0;

−ΨI(Y) +W = 0,

(6)

where C = Y ×s+1 U s+1 · · · ×k−1 Uk−1 and F = Z ×h (Uh)
T · · · ×k+1 (Uk+1)

T .

Proof. (i) By ΨI(M) − X (t+1) − E(t+1) = (µ(t))(−1)(Y(t+1) − Y(t)) and the boundedness of Y(t), we have
lim

t−→∞
ΨI(M)−X (t+1) − E(t+1) = 0.

(ii) From the the optimality of Z(t+1), {U (t+1)
k }hk=s+1, and E(t+1), we have

L(Z(t+1), {U (t+1)
k }hk=s+1,E

(t+1),Y(t), µ(t))

≤L(Z(t+1), {U (t+1)
k }hk=s+1,E

(t+1),Y(t), µ(t)) +
η(t)

2
∥Z(t+1) −Z(t)∥2F

+
η(t)

2

h∑
k=s+1

∥U (t+1)
k −U

(t)
k ∥2F +

η(t)

2
∥E(t+1) − E(t)∥2F

≤L(Z(t), {U (t+1)
k }hk=s+1,E

(t+1),Y(t), µ(t)) +
η(t)

2

h∑
k=s+1

∥U (t+1)
k −U

(t)
k ∥2F

+
η(t)

2
∥E(t+1) − E(t)∥2F

≤L(Z(t), {U (t)
k }hk=s+1,E

(t+1),Y(t), µ(t)) +
η(t)

2
∥E(t+1) − E(t)∥2F

≤L(Z(t), {U (t)
k }hk=s+1,E

(t),Y(t), µ(t))

=L(Z(t), {U (t)
k }hk=s+1,E

(t),Y(t−1), µ(t−1)) +
1

2
(µ(t−1))−2(µ(t−1) + µ(t))∥Y(t) −Y(t−1)∥2F . (7)

Therefore, we have

∥Z(t+1)∥U,1 ≤ L(Z(t+1), {U (t+1)
k }hk=s+1,E

(t+1),Y(t), µ(t)) + ∥Y(t)∥2F /(µ(t))2

≤ L(Z(t), {U (t)
k }hk=s+1,E

(t),Y(t), µ(t)) + ∥Y(t)∥2F /(µ(t))2

≤ L(Z(1), {U (1)
k }hk=s+1,E

(1),Y(0), µ(0))

+
1

2

t∑
n=1

(µ(n−1))−2(µ(n−1) + µ(n))∥Y(n) −Y(n−1)∥2F + ∥Y(t)∥2F /(µ(t))2

≤ L(Z(1), {U (1)
k }hk=s+1,E

(1),Y(0), µ(0)) +

t∑
n=1

(µ(n−1))−2µ(n)∥Y(n) −Y(n−1)∥2F

+ ∥Y(t)∥2F /(µ(t))2. (8)

From (8),
∑∞

t=1(µ
(t))−2µ(t+1) < +∞, and the boundedness of Y(t), we can know that Z(t) is bounded. Besides,

since ∥U (t)
k ∥F =

√
Ik holds for any positive integer t, U (t)

k and X (t) are bounded. Therefore, E(t) is bounded from
lim

t−→∞
ΨI(M)−X (t+1) − E(t+1) = 0.
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(iii) From (7), we have
n∑

t=1

η(t)

2
(∥Z(t+1) −Z(t)∥2F +

h∑
k=s+1

∥U (t)
k −U

(t+1)
k ∥2F + ∥E(t+1) − E(t)∥2F )

−
n∑

t=1

1

2
(µ(t−1))−2(µ(t−1) + µ(t))∥Y(t) −Y(t−1)∥2F

≤L(Z(1), {U (1)
k }hk=s+1,E

(1),Y(0), µ(0))− L(Z(n+1), {U (n+1)
k }hk=s+1,E

(n+1),Y(n), µ(n))

≤L(Z(1), {U (1)
k }hk=s+1,E

(1),Y(0), µ(0)) + ∥Y(n)∥2F /(µ(n))2 (9)

Since Y(n) is bounded, there exists M0 and M1 such that
n∑

t=1

η(t)

2
(∥Z(t+1) −Z(t)∥2F +

h∑
k=s+1

∥U (t+1)
k −U

(t)
k ∥2F + ∥E(t+1) − E(t)∥2F )

≤ M0 +

n∑
t=1

1

2
(µ(t−1))−2(µ(t−1) + µ(t))M1 ≤ M0 +

n∑
t=1

(µ(t−1))−2µ(t)M1. (10)

As n approaches infinity, we have
∞∑
t=1

η(t)

2
(∥Z(t+1) −Z(t)∥2F +

h∑
k=s+1

∥U (t+1)
k −U

(t)
k ∥2F + ∥E(t+1) − E(t)∥2F )

≤M0 +

∞∑
t=1

(µ(t−1))−2µ(t)M1 < ∞. (11)

(iv) From (iii) we can see that there exists M2 such that

max(∥Z(t+1) −Z(t)∥2F , ∥E
(t+1) − E(t)∥2F , {∥U

(t+1)
k −U

(t)
k ∥2F }hk=s+1) ≤ (η(t))(−1)M2

2 ,

therefore
∥X (t+1) −X (t)∥F

=∥Z(t+1) ×h (U
(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T

+Z(t) ×h (U
(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
≤∥Z(t+1) −Z(t)∥F + ∥Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
=∥Z(t+1) −Z(t)∥F + ∥Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t)
s+1)

T

+Z(t) ×h (U
(t+1)
h )T · · · ×s+1 (U

(t)
s+1)

T −Z(t) ×h (U
(t)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
≤∥Z(t+1) −Z(t)∥F + ∥Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t+1)
s+1 )T −Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
+ ∥Z(t) ×h (U

(t+1)
h )T · · · ×s+1 (U

(t)
s+1)

T −Z(t) ×h (U
(t)
h )T · · · ×s+1 (U

(t)
s+1)

T ∥F
≤∥Z(t+1) −Z(t)∥F + ∥U (t+1)

s+1 −U
(t)
s+1∥F ∥Z

(t)∥F + ∥Z(t) ×h (U
(t+1)
h )T · · · ×s+2 (U

(t+1)
s+2 )T

−Z(t) ×h (U
(t)
h )T · · · ×s+2 (U

(t)
s+2)

T ∥F

≤∥Z(t+1) −Z(t)∥F +

h∑
k=s+1

(∥U (t+1)
k −U

(t)
k ∥F )∥Z(t)∥F

≤(η(t))(−1/2)(1 + h∥Z(t)∥F )M2. (12)

From the boundedness of Z(t), there exists M3 such that ∥X (t+1) −X (t)∥2F ≤ (η(t))(−1)M3.

Let D(t+1) = ΨI(M) − X (t+1) − E(t+1). From the above discussion, we know that there exists M4 such that
∥D(t+1) −D(t)∥F ≤ ∥X (t+1) −X (t)∥F + ∥E(t+1) − E(t)∥F ≤ (η(t))(−1/2)M4. Thus, we have

∥D(t)∥F ≤ (η(t))(−1/2)M4 + ∥D(t+1)∥F ≤ M4

m∑
n=0

(η(t+n))(−1/2) + ∥D(t+1+m)∥F

5



for any m > 0 and (µ(n))(−1)∥Y(n+1) −Y(n)∥F = ∥D(n+1)∥F ≤ M4

∑+∞
t=n+1(η

(t))(−1/2) when m −→ ∞.

From lim
n−→∞

µ(n)
∞∑
t=n

(η(t))−1/2 = 0, we have lim
n−→∞

∥Y(n+1) −Y(n)∥F = 0.

(v) From the boundedness of {[Z(t), {U (t)
k }hk=s+1,X

(t),E(t)]}, there exist a sub-

sequence {[Z(ti), {U (ti)
k }hk=s+1,E

(ti),Y(ti)]} and [Z∗, {U∗
k}hk=s+1,E

∗,Y∗] such that

lim
i→+∞

[Z(ti), {U (ti)
k }hk=s+1,E

(ti),Y(ti)] = [Z∗, {U∗
k}hk=s+1,E

∗,Y∗]. From the optimality of Z(ti+1) and

the convexity of the tensor U1 norm, there exists H(ti+1) ∈ ∂∥Z(ti+1)∥U,1 such that

H(ti+1) + µ(ti)(Z(ti+1) −P(ti) ×s+1 U
(ti)
s+1 ×s+2 · · · ×h U

(ti)
h ) + η(ti)(Z(ti+1) −Z(ti)) = 0

and
H∗ −Y∗ ×s+1 U

∗
s+1 ×s+2 · · · ×h U∗

h = 0,

where lim
i→+∞

H(ti+1) = H∗, and P̂
(ti)

= Ψ(M)− E(ti) +
1

µ(ti)
Y(ti). By the upper semi-continuous property of the

subdifferential [22], Y∗ ×s+1 U
∗
s+1 ×s+2 · · · ×h U∗

h = H∗ ∈ ∂∥Z∗∥U,1.

From the optimality of U
(ti+1)
k , we have (U

(ti+1)
k )TU

(ti+1)
k = I , and there exists Y

(ti+1)
k such that 0 =

µ(ti)(U
(ti+1)
k B(k) −A(k))BT

(k) + η(ti)(U
(ti+1)
k −U

(ti)
k )+U

(ti+1)
k (Y

(ti+1)
k +(Y

(ti+1)
k )T ), where B = P̂

(ti) ×s+1

U
(ti+1)
s+1 · · · ×k−1 U

(ti+1)
k−1 and A = Z(ti+1) ×h U

(ti)T
h ×h−1 · · · ×k+1 U

(ti)T
k+1 .

Thus, we have (U∗
k)

TU∗
k = I and there exists Y ∗

k such that 0 = (U∗
kC

∗
(k))B

∗T
(k) + U∗

k(Y
∗
k + (Y ∗

k)
T ) if i −→ ∞,

where B∗ = Z∗×h (U
∗
h)

T · · ·×k (U
∗
k)

T and C∗ = Y∗×s+1U
∗
s+1 · · ·×k−1U

∗
k−1. Therefore, 0 = −F∗

(k)(C
∗
(k))

T +

U∗
k(−Y ∗

k + (−Y ∗
k)

T ) holds, where F∗ = Z∗ ×h (U∗
h)

T · · · ×k+1 (U
∗
k+1)

T .

Besides, from the optimality of E(ti+1), we have ΨI(E(ti+1)) = 0 and

ΨIc(µ
(ti)(E(ti+1) +X (ti+1) − 1

µ(ti)
Y(ti)) + η(ti)(E(ti+1) − E(ti))) = 0,

from which we deduce that both of ΨI(E∗) = 0 and 0 = lim
i−→∞

ΨIc(µ
(ti)(E(ti+1)−ΨI(M)+X (ti+1)− 1

µ(ti)
Y(ti)) =

−ΨIc(Y∗) hold. Furthermore, it is evident that there exists W∗ such that 0 = −ΨI(Y∗) +W∗.

5 Proof of Lemma 1 and Theorem 2

Lemma 1. For A ∈ RI1×I2×···×Ih , the subgradient of ∥A∥1,U is given as ∂∥A∥1,U = {U−1(sgn(U(A)) +

F |ΨĤ(U(F)) = 0, ∥F∥U,∞ ≤ 1}, where Ĥ denotes the support of U(A).

Proof. We can get the conclusion by
〈
U−1(sgn(U(A))) +F ,A

〉
= ⟨sgn(U(A)),U(A)⟩ + ⟨U(F),U(A)⟩ =

∥A∥1,U and ∥U−1(sgn(U(A)) + F∥U,∞ = ∥sgn(U(A)) + U(F)∥∞ = max(∥sgn(U(A))∥∞), ∥U(F)∥∞) ≤ 1
[23].

Lemma 2. If there exists a dual certificate G (that satisfy ΨI(G) = G, PS(G) = Û−1(sgn(Û(M))) and
∥PS⊥(G)∥Û,∞ ≤ 1 ) and any H obeying ΨI(H) = 0, then

∥M+H∥Û,1 ≥ ∥M∥Û,1 + (1− ∥PS⊥(G)∥Û,∞)∥PS⊥(H)∥Û,1.

Proof. For any Z ∈ ∂∥M∥Û,1, we have ∥M + H∥Û,1 ≥ ∥M∥Û,1 + ⟨Z,H⟩. Since G = Û−1(sgn(Û(M))) +

PS⊥(G) and Z = Û−1(sgn(Û(M)))+PS⊥(Z), we obtain ∥M+H∥Û,1 ≥ ∥M∥Û,1+⟨G,H⟩+⟨PS⊥(Z − G),H⟩.
Therefore we have ∥M+H∥Û,1 ≥ ∥M∥Û,1 + ⟨PS⊥(Z − G),H⟩, where ⟨G,H⟩ = 0 due to ΨI(H) = 0.

Since ∥ · ∥Û,1 and ∥ · ∥Û,∞ are dual to each other, there exists ∥Z0∥Û,∞ ≤ 1 such that ⟨Z0, PS⊥(H)⟩ =

∥PS⊥(H)∥Û,1. Hence, by selecting a Z such that PS⊥(Z) = PS⊥(Z0), we get ⟨PS⊥(Z),H⟩ = ∥PS⊥(H)∥Û,1.
Therefore, we have ⟨PS⊥(Z − G),H⟩ ≥ (1 − ∥PS⊥(G)∥Û,∞)∥PS⊥(H)∥Û,1 due to | ⟨PS⊥(G), PS⊥(H)⟩ | ≤
∥PS⊥(G))∥Û,∞∥PS⊥(H)∥Û,1, thus completed the proof.
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min
X ,UT

kn
Ukn=I(n=s+1,··· ,h)

∥X ×ks+1
Uks+1

· · · ×kh
Ukh

∥U,1

s.t. ∥ΨI(M)−ΨI(X )∥F ≤ δ (13)

Theorem 2. If the dual certificate G = ΨIPS(PSΨIPS)
−1(Û−1(sgn(Û(M)))) satisfies ∥PS⊥(G)∥Û,∞ ≤ C1 < 1

and PSΨIPS ≽ C2pI , then we can obtain the following inequality:

∥M− X̂∥F ≤ 1

1− C1

√
1/C2 + p

p
I1I2δ + δ, (14)

where X̂ is obtained by (13) and p denotes the sampling rate.

Proof. Let H be H = X̂−M for brevity. Considering that ∥H∥F = ∥ΨI(H)∥F +∥ΨIc(H)∥F ≤ δ+∥ΨIc(H)∥F ,
we focus solely on the second term ∥ΨIc(H)∥F in the following discussion.

Utilizing the triangle inequality and Lemma 2, we obtain ∥M + H∥Û,1 ≥ ∥M + ΨIc(H)∥Û,1 −
∥ΨI(H)∥Û,1 and ∥M + ΨIc(H)∥Û,1 ≥ ∥M∥Û,1 + (1 − ∥PS⊥(G)∥Û,∞)∥PS⊥(ΨIc(H))∥Û,1. Consequently,
we have ∥M∥Û,1 ≥ ∥M + H∥Û,1 ≥ ∥M∥Û,1 + (1 − ∥PSc(G)∥Û,∞)∥PS⊥(ΨIc(H))∥Û,1 − ∥ΨI(H)∥Û,1 ≥
∥M∥Û,1 + (1−C1)∥PS⊥(ΨIc(H))∥Û,1 −∥ΨI(H)∥Û,1, which leads to ∥PS⊥(ΨIc(H))∥F ≤ ∥PS⊥(ΨIc(H))∥Û,1 ≤

1
1−C1

∥ΨI(H)∥Û,1 ≤
√
I1I2

1−C1
∥ΨI(H)∥F ≤

√
I1I2

1−C1
δ.

Additionally, due to PSΨIPS ≽ C2pI , we find ∥ΨI(PS(ΨIc(H)))∥2F = ⟨PSΨIPS(ΨIc(H)), PS(ΨIc(H))⟩ ≥
C2p∥PS(ΨIc(H))∥2F . Moreover, because of ΨI(PS⊥(ΨIc(H))) + ΨI(PS(ΨIc(H))) = 0, we get
C2p∥PS(ΨIc(H))∥2F ≤ ∥ΨI(ΨS(ΨIc(H)))∥2F = ∥ΨI(PS⊥(ΨIc(H)))∥2F ≤ ∥PS⊥(ΨIc(H))∥2F .

Consequently, we have ∥ΨIc(H)∥2F = ∥PS⊥(ΨIc(H))∥2F + ∥PS(ΨIc(H))∥2F ≤ ( 1
C2p

+ 1)∥PS⊥(ΨIc(H))∥2F ≤
( 1
C2p

+ 1) I1I2
(1−C1)2

δ2, and thus completed the proof.

6 Stable TC-SL

Similarly, we can establish stable TC-SL based on the given {Ûkn
}sn=3:

min
X ,UT

kn
Ukn=I(n=s+1,··· ,h)

∥X ×ks+1
Uks+1

· · · ×kh
Ukh

∥(k1,k2)
∗,U

s.t. ∥ΨI(M)−ΨI(X )∥F ≤ δ. (15)

Before proving the stable recovery property of (15), we need to introduce the definition of the tensor product,
which is a direct generalization from high order tensor product defined in [6].
Definition 3. (tensor product for given (k1, k2) and U) For an h-order tensor A ∈ RIk1

×L×···×Ikh and B ∈
RL×Ik2

×···×Ikh , the tensor product of A and B is defined as A ∗ B = U−1(U(A) ⊙f U(B)), where [Ā ⊙f

B̄]:,:,ik3
,ik4

,··· ,ikh
= [Ā]:,:,ik3

,ik4
,··· ,ikh

[B̄]:,:,ik3
,ik4

,··· ,ikh
.

Let A = U ∗ S ∗VT be t-SVD of A by using tensor product given in the Definition 3, where VT is defined by
[U(VT )]:,:,ik3

,ik4
,··· ,ikh

= [U(V)]T:,:,ik3
,ik4

,··· ,ikh
for all (ik3

, ik4
, · · · , ikh

). For simplicity, we’ll consider the case

of (k1, k2, · · · , kh) = (1, 2, · · · , h) and use ∥ · ∥∗,U and ∥ · ∥2,U to denote ∥ · ∥(1,2)∗,U and ∥ · ∥(1,2)2,U , respectively.

Lemma 3. For tensor A ∈ RI1×I2×···×Ih with rank(1,2)(U(A)) = r, if its skinny t-SVD is A = U ∗ S ∗ VT , then
the subgradient of ∥A∥∗,U can be given as ∂∥A∥∗,U = {U ∗ VT +W |UT ∗W = 0,W ∗ V = 0, ∥W∥2,U ≤ 1}.

Proof. We can obtain the conclusion by
〈
U ∗ VT +W ,A

〉
=

〈
U ∗ VT ,U ∗ S ∗ VT

〉
+

〈
W ,U ∗ S ∗ VT

〉
=

⟨I,S⟩ = ∥A∥∗,U and ∥U ∗ VT +W∥2,U ≤ 1 [23].

Suppose M = U0 ∗ S0 ∗ VT
0 is the skinny t-SVD of M. We define T = {U0 ∗ YT + W ∗ VT

0 ,Y ,W ∈
RI1×r×I3×···×Ih}, PT is the projections onto T, and T⊥ is the orthogonal complement of T. Considering
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Table 1: Comparing various methods on the five video segments at a sampling rate p = 0.3.

Video TNN-DCT TNN-DFT SNN KBR WSTNN HTNN-DCT TC-SL TC-U1
run 9th 25.77 25.73 22.53 27.48 30.54 28.35 30.63 32.79

run 39th 30.66 30.60 29.24 38.03 34.74 34.05 35.01 40.39
run 40th 28.83 28.80 26.13 33.1 32.59 31.73 33.35 36.06
run 42th 27.72 27.86 24.48 31.75 32.08 30.63 31.87 36.88
run 108th 31.64 31.55 29.83 34.13 34.13 33.72 35.57 36.96
Average 28.92 28.91 26.44 32.90 32.82 31.70 33.29 36.62

(X̂ , {Ûk}hk=1) as the result obtained by (15), we define Û(A) = A ×1 Û1 ×2 · · · ×h Ûh. By the property of
subgradient ∂∥ · ∥∗,Û and the duality between ∥W∥2,Û and ∥W∥∗,Û , we can get the following results.

Lemma 4. If there exists a dual certificate G (that satisfy ΨI(G) = G, PT(G) = U0 ∗ VT
0 and ∥PT⊥(G)∥2,Û ≤ 1 ),

we have
∥M+H∥∗,Û ≥ ∥M∥∗,Û + (1− ∥PT⊥(G)∥2,Û )∥PT⊥(H)∥∗,Û

for any H obeying ΨI(H) = 0.

Theorem 3. If the dual certificate G = ΨIPT(PTΨIPT)
−1(U0 ∗ VT

0 ) satisfies ∥PT⊥(G)∥2,Û ≤ C1 < 1 and
PTΨIPT ≽ C2pI , then we have

∥M− X̂∥F ≤ 1

1− C1

√
1/C2 + p

p
min(I1, I2)δ + δ, (16)

where X̂ is obtained by (15) and p is the sampling rate.

7 Color Video Inpainting

We randomly selected five color video segments with the most rapidly changing frames from category ‘run’ of the
HMDB51, including run 9th, run 39th, run 40th, run 42th, and run 108th, and evaluated all tensor completion methods
on the selected video segments, where run xth is used to represent the x-th video in the category ‘run’. We present
the PSNR values of all methods on the five video segments in Table 1. The results in the table show a significant
improvement achieved by our methods (TC-SL and TC-U1) for color video inpainting. The PSNR results obtained
by TC-U1 outperform the third-best method (the second-best method is TC-SL) by more than 3.5 dB on average.
This substantial improvement showcased by TC-U1 in color video inpainting, as reflected in the higher PSNR values,
provides strong evidence for its effectiveness in high-order tensor completion, particularly in scenarios involving
non-smooth changes between tensor slices.
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