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Motivation

▶ An assumption for matrix recovery and tensor recovery
• Row/column permutation invariance for matrix:

• Slice permutation invariance (SPI) for tensor:

▶ A counter-example for tensor SPI: a huge gap between the tensor with
different slices order

Figure 1: Color video (‘bus’) (modeled as a tensor Y ∈ R144×176×90) can be approximated
by low tubal rank tensor. Here, only first frame of visual results in (a)-(b) are presented. (a)
The first frame of original video (b) approximation by tensor X ∗ ∈ R144×176×90 with tubal rank
r = 30. (MPSNR=32.45dB) (c) approximation by tensor X̂ ∗ ∈ R144×176×90 with tubal rank r = 30.
(MPSNR=29.27dB) (d) MSE results of X ∗ and X̂ ∗ comparison for different r.

SPI of Tensor Nuclear Norm

Theorem 1. For same circle C1 = {i1, i2, ..., in3, i1} and C2 =
{ik, ik+1, ..., in3, ..., ik−1, ik},
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Or1
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where Dτ (A) = argminX
1
2∥A − X∥2F + τ∥X∥∗, Or1 = {i1, i2, ..., in3} is obtained

by C1, and Or2 = {ik, ik+1, ..., in3, ..., ik−1} is obtained by C2.

▶ The SPI of tensor recovery for color image (n3 = 3)

Theorem 2. For Y ∈ Rn1×n2×n3, if n3 ≤ 3, then

Dτ (Y) = Dτ (Y ◦ P(k)) ◦ P(k)−1
(2)

for k = 1, 2, 3.

Methodology
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
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(5)
▶ Y with similar adjacent frontal slices can be approximated by a lower rank matrix.

▶ The key point to find a better order sequence of the frontal slice is to solve a
Minimum Hamiltonian circle problem.

▶ From [1], the simplest idea for getting a Minimum Hamiltonian circle is that, when we
get Circle k, we can make appropriate modifications for circle k to get another circle
k + 1 with a smaller weight.

Experiments and Results

▶ Experiment 1: Image classification

Figure 2: Classification accuracies of the 5 algorithms on ORL database and CMU PIE database:
(a) RPCA[3] (b) SNN[4] (c) Liu[2] (d) TRPCA[5] (e) TRPCA-SPV

▶ Experiment 2: Image sequence recovery

▶ Experiment 3: Sensitivity analysis of parameters

Figure 3: Sensitivity analysis of parameter κ for TRPCA-SPV on (a) ORL database and (b) Pavia
University; Convergence analysis for TRPCA-SPV with different κ on (c) ORL database and (d)
Pavia University.
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