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Abstract

Low-rank tensor recovery methods have increasingly received attention due to their suc-
cessful applications in dimensionality reduction and data analysis. A fundamental problem
is often asked: how to define tensor rank effectively and reasonably? Several tensor rank
defining ways (such as the CP rank, the Tucker rank, and the tensor product-based rank)
have been explored to answer this question. Among them, the tensor product-based defining
way has recently become increasingly popular because of its natural generalization of the
matrix-matrix product. Although the tensor product-based rank has successfully studied the
low rankness within the tensor data, there are still two challenges. (1) Transpose Invariance
and Slice Permutations Invariance of the tensor product-based rank do not hold, causing the
performance degradation in tensor recovery and limiting its applications in the real world.
(2) Since the calculating tensor singular value decomposition (t-SVD) is required in tensor
recovery with the product-based rank, leading to high computational cost for a large tensor.
In this dissertation, we focus on solving these two problems, and the main contributions are

summarized as follows:

* We analyze Transpose Variability in tensor recovery from the view of theory and
experiment. The Weighted Tensor Average Rank is proposed and applied to the third-
order tensor robust principal component analysis to eliminate the transpose variability.
The experimental results indicate that the proposed method can more exactly explore

the low dimensional structure within the tensor data.

* We study Slice Permutations Variability (SPV) in tensor recovery from the view of

theory and experiment. We propose a novel tensor recovery algorithm by Minimum
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Hamiltonian Circle for SPV to handle slice permutation variability. The experimental

results demonstrate the effectiveness of the proposed algorithm in eliminating SPV.

Besides, we propose a novel tensor recovery framework with a developing rank
estimation strategy that utilizes a dual low-rank constraint, reducing total cost at each
iteration of the developing algorithm to O(N3log N + £ N?) from O(N?) achieved
with standard methods, where x was the estimation of tensor rank and far less than N.
The experiments on the synthetic and real-world data demonstrate the effectiveness

and efficiency of the proposed method.
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Chapter 1

Introduction

1.1 Background

With the rapid advances of data-intensive applications in various engineering and scientific
fields, there is a growing explosion of high-dimensional data, including images and videos,
which are difficult to store, transmit, and process. Therefore, many low-rank matrix methods
have been proposed for efficiently handling and understanding such complicated data by
exploiting low-dimensional structures in such high-dimensional data [9, 10, 8, [12} 83, 77,
211,76/, 1103]].

Principal Component Analysis (PCA) [21, /6] was first proposed and widely used for
dimension reduction and data analysis. The traditional PCA, which employs the Frobenius
norm, is robust against small noise perturbations but sensitive to gross sparse errors. Con-
sequently, when the data is corrupted by gross sparse errors, PCA fails to work [8, 12]. To
solve this issue, Robust PCA (RPCA) [, [12]] was proposed, which employs ¢y-norm (i.e.,

the number of non-zero entries in a matrix) to quantify the gross sparse errors present in the



data. These matrix-based low-rank methods have achieved remarkable success in various
applications, including dimension reduction, as well as image and video processing.
Currently, massive amounts of high-dimensional data, including images, videos, hyper-
spectral data, and 3-D range data, have become available due to dramatic advances in
hardware for data [14]]. Such real-world data/signals are naturally represented as multidi-
mensional arrays (known as tensor. An easy way to deal with such tensor data is first
to transform the data tensor into 2D matrices, then perform the matrix-based methods on
the matrices. However, as Liu et al. [45] points out, the essential structures in the tensor
data will be lost when a higher-order tensor is transformed into a 2D matrix. Exploiting
low-dimensional structures in such tensor data in an effective way has become increasingly

important.

1.2 Low-Rank Tensor Recovery

In recent years, many low-rank tensor recovery methods have been proposed [25, 145,150} 189,
101,186, 185,17, 152]]. Different with matrix case, as there is no unified defining way for tensor
rank, how to define a tensor rank appropriately is an important problem in low-rank tensor
recovery. General speaking, there are three common ways to define the tensor rank functions:
1) the CANDECOMP/PARAFAC (CP) rank [40, 43} [11]], 2) Tucker rank [43, [17], and 3)
tensor tubal rank [47,30]. Inspired by the definition of the matrix rank, Kiers [40] defined

the CP rank of the tensor X as the minimum number of rank-one decomposition. However,

In this thesis, the tensor is the generalization of the matrix to the higher order. For example, the color image
can be regarded as a third-order tensor because of its RGB channels. Vector and matrix can be regarded as

first-order and second-order tensors, respectively.



computing CP rank for a given tensor X is NP-hard [S0], limiting the application of CP
rank in the real world. In addition, due to the breakthroughs in low-rank matrix recovery
(9,110} 18, 12,183, 77,121} 76, 103]], the method based on Tucker decomposition (the unfolding
matrices of the tensor) becomes more popular than the one based on CP decomposition. For
example, in [23], the rank of the tensor (Tucker rank) was defined as the sum of the ranks of
the different unfolding matrices. Besides, since the corresponding tensor rank minimization
problem is an NP-hard problem, Gandy e? al. utilized the sum of nuclear norms of the
different unfolding matrices (SNN) instead of the sum of ranks for tensor recovery. However,
as stated in [S0], SNN is not the convex envelope of the sum of the ranks. Therefore, a
weighted sum of the ranks of the unfolding matrices is considered in [45]]. Since the tensor
recovery methods based on the weighted sum of ranks suffer from the high computation cost
of the computing of singular value decompositions (SVDs) for the large unfolding matrices,
an efficient matrix factorization method for tensor recovery is developed in [49].

More recently, tensor nuclear norm (TNN) based on the tensor-tensor product (t-product)
has attracted more attention because of its effectiveness in tensor recovery, particularly
for tensor completion [96, 51] and tensor robust principal component analysis [50]. The
resulting TNN-based models can exactly recover the true value of the problem under some
conditions as stated in [96, 51, 50]. However, the conditions are hardly satisfied in the real
world. In addition, since the information of the data is concentrated in the components
corresponding to a few largest singular values [64, 50, the larger singular values should be
penalized mildly, and the smaller ones should be penalized heavily. Whereas the TNN-based
methods treat the singular values with an equal penalty, leading to the over-penalization for
large singular values and therefore suffering from performance degradation. Therefore, many

low-rank recovery methods with non-convex surrogates of ¢y-norm have been proposed to



solve this issue [74} 38, 84], in which the rank function and nuclear norm can be regarded
as {p-norm and ¢;-norm of a singular vector, respectively. Since computing t-SVD in each
iteration is required, these methods cost much computation and cannot be used to handle
large-scale tensor data efficiently, where the computational complexity of t-SVD for a
tensor with the size of 1 x [y X I3 is (9([(1)[(22)[3 + I11x13log I3), I(1y = max(Iy, I;) and
Ig) = min(/y, I3). To address this issue, Zhou et al. [102] have proposed Tensor Completion
by Tensor Factorization (TCTF), which achieved significant improvement in terms of running
time if the given tensor data is low-rankness, and their proposed rank-decreasing scheme

can estimate the t-product-based tensor rank precisely.

1.3 Motivations

Although the t-product-based defining way for tensor rank is getting increasingly popular
and has achieved great success, there are still several challenges as follows: (1) as we
will discuss in this dissertation, two important properties (including Transpose Invariance
and Slice Permutations Invariance) to the t-product-based tensor rank that do not hold.
Because the t-product-based tensor recovery does not satisfy the Transpose Invariance, some
information within the data will be lost if only the low rankness of tensor data along with
one direction is considered. For slice permutation invariance, it is derived from a reasonable
assumption about the algorithm, i.e., changing data order should not affect the effectiveness
of the algorithm. We call these two interesting problems as Transpose Variability (TV) and
Slice Permutations Variability (SPV) in tensor recovery, respectively. (2) The TCTF [102] is
based on a basic hypothesis that the low-rank tensor can be approximatively decomposed to

the t-product of two skinny tensors A € R11*#*13 and B € R**2X!3 (x is an estimation of



the t-product-based tensor rank), causing its over-reliance on the rank estimation strategy.
On the other hand, because of the lacking a rank-increasing scheme, the rank estimation
strategy given in [[102] often underestimates the true rank, which leads to performance
degradation in TCTF. (3) Currently, the common non-convex surrogate functions of the
lo-norm, including /,-norm (0 < p < 1) [23], ETP [26], Geman [27], Laplace [71] and
Logarithm [24], have been widely applied in the field of low-rank recovery and achieved
more satisfied performance [29, 61} 53] 189, [82]]. But these non-convex low-rank recovery
methods require calculating tensor singular value decomposition (t-SVD), leading to high
computational cost for a large tensor. An efficient and effective tensor completion framework
for a wide range of surrogate functions is necessary to address the over-penalization problem
in the TNN-based methods and reduce the computational cost caused by t-SVD for the large

tensor simultaneously.

1.4 Contributions

In this dissertation, two questions are mainly asked: (i) How to define an effective tensor
rank based on the tensor-tensor product? (ii) How to solve the low-rank tensor recovery
model effectively and efficiently?

To solve the above problems, we give a new tensor rank called Weighted Tensor Average
Rank (WTAR) and a novel algorithm to eliminate transpose variability and slice permutation
variability in tensor recovery, respectively. Besides, we propose a novel tensor recovery
method with a dual low-rank constraint strategy, which aims to avoid the high computa-
tional cost in the standard t-SVD-based method, and to achieve superior recovery results

simultaneously.



The main contributions of this dissertation are three-folds as follows:

* We initially explore an intriguing phenomenon known as TV (Tensor Variability).
To address TV in tensor recovery, we introduce a novel tensor rank called Weighted
Tensor Average Rank (WTAR), which enables us to analyze the low-rank structure
of tensor data from different dimensions of tensor data. We apply WTAR to the
third-order tensor robust principal component analysis to investigate its effectiveness.
The experimental results indicate that the proposed method is effective. The findings

related to this research have been published in an international journal [93].

* We discuss the SPV of several critical tensor recovery problems theoretically and
experimentally. The conclusion shows a vast gap between results by tensor recovery
for tensor data with different slice sequences. To overcome SPV in DFT-based tensor
recovery, we develop a novel tensor recovery algorithm by Minimum Hamiltonian
Circle for SPV (TRSPV), exploiting low dimensional subspace structures within data
tensor more exactly, which work has been published in an international conference
[100]. Furthermore, we extend our study to explore SPV in other t-product-based
methods and propose a general solution to mitigate SPV in such methods. To the best of
our knowledge, this is the first work to extensively discuss SPV in the context of tensor
recovery and provide an effective solution to mitigate its impact. The experimental
results demonstrate the effectiveness of the proposed algorithm in eliminating SPV in

tensor recovery.

* We propose a novel tensor completion framework that aims to overcome the reliance
on rank estimation strategies used in the standard tensor factorization-based tensor

recovery and tackle the computational burden associated with the standard t-SVD-
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based tensor recovery. To this end, we propose a new tensor norm with a dual low-rank
constraint, which utilizes the low tensor average rank prior and tensor tubal rank
information at the same time. In the proposed tensor norm, a series of surrogate
functions of the tensor tubal rank can be used to achieve better performance in harness
low-rankness within tensor data. It is proven theoretically that the resulting tensor
completion model can effectively avoid performance degradation caused by inaccurate
rank estimation. Meanwhile, attributed to the proposed dual low-rank constraint, the t-
SVD of a smaller tensor instead of the original big one is computed by using a sample
trick. Based on this, the total cost at each iteration of the optimization algorithm is
reduced to O(N?3log N + kN?) from O(N*) achieved with standard methods, where
r 1s the estimation of the true tensor rank and far less than /N. Our method was
evaluated on synthetic and real-world data, and it demonstrated superior performance
and efficiency over several existing state-of-the-art tensor completion methods. This

study has been published as a preprint on arXiv [99].

1.5 Organization

The dissertation contains seven chapters and one appendix. Each of the chapters is described

below.

* Chapter 1 mainly gives an introduction to the low-rank tensor recovery, and summa-

rizes the motivation and contribution as well.

» Chapter 2 provides a comprehensive overview of the related work in this paper, orga-

nized into four main parts. (1) The first part introduces various tensor rank functions,



discussing their properties and applications. (2) The second part focuses on several
prominent low-rank tensor recovery models. It presents a detailed explanation of
Tensor Principal Component Analysis (TPCA), Tensor Robust Principal Component
Analysis (TRPCA), and Tensor Completion (TC). (3) The third part delves into opti-
mization algorithms commonly used in tensor recovery. It covers essential methods
such as the Tensor Singular Value Threshold (TSVT), Generalized Tensor Singular
Value Threshold (GTSVT), Block Coordinate Descent (BCD), and Alternating Direc-
tion Method of Multipliers (ADMM). (4) The final part introduces three representative

applications of the low-rank tensor recovery models in computer vision.

Chapter 3 delves into an in-depth exploration of Total Variation (TV) in tensor recov-
ery. It introduces the Weighted Tensor Average Rank (WTAR) as a novel approach
to address TV in tensor recovery. The WTAR is specifically applied to the third-
order tensor robust principal component analysis, allowing for an investigation of its

effectiveness in studying the low-rankness present in the tensor data.

Chapter 4 focuses on the investigation of Slice Permutation Variability (SPV) in
Discrete Fourier Transformation (DFT)-based tensor recovery, which is a specific case
of a special case of t-product-based tensor recovery. Specifically, we discuss SPV in
several key DFT-based tensor recovery problems theoretically and experimentally. A
novel algorithm called TRSPV. This algorithm is specifically applied to third-order

tensor robust principal component analysis to investigate its effectiveness.

Chapter 5 studies the issue of SPV in other t-product-based tensor recovery further.
Specifically, we deeply analysis SPV in three cases in t-product-based tensor recovery,

including DFT-based methods, Discrete Cosine Transform (DCT)-based methods,
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1.6

and Random Orthogonal Matrix (ROM)-based methods experimentally. We provide
a general solver to overcome the issue of SPV in t-product-based tensor recovery.
The experimental results demonstrate the effectiveness of the proposed algorithm in

eliminating SPV.

Chapter 6 gives a novel efficiency and effective tensor recovery framework with a
developed rank estimation method that involves the convex surrogate and a series of
non-convex surrogates. We compare several state-of-art methods on tensor completion

problems to investigate the effectiveness of the proposed method.
Chapter 7 gives the conclusions and future works.

Appendix presents some definitions and symbols used in this dissertation. Some
tensor computations and the definitions of specific tensors are given in A.1 and A.2,

respectively.
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10



Chapter 2

Related works

In recent years, a massive amount of high-dimensional data, including images, videos,
hyper-spectral data, and 3-D range data, became available due to the dramatic advance in
hardware for data [14]]. The real-world data or signals are often naturally represented as
multidimensional arrays, which are commonly referred to as tensors. These tensors often
lie in some low-dimensional sub-spaces or manifolds approximately. To exploit such low-
dimensional structures in tensor data, low-rank tensor recovery methods have been proposed
and widely applied in color images and videos denoising [50], image inpainting [7/8, 66],
video background modeling [8, 198, I50], and hyperspectral image restoration [25].

Exploiting low-dimensional structures in such tensor data has become increasingly
important. As a powerful computational tool for tensor analysis, low-rank tensor recovery
has been widely applied in color images and videos denoising [S0], image inpainting [[78}166l],
video background modeling [8, 98, 50]], and hyperspectral image restoration [25]].

In this chapter, I will introduce the three different ways of defining the tensor rank

including CP rank, Tucker rank, and tensor product-based rank first. Then, I will introduce
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Table 2.1: Notations

Notations Descriptions Notations Descriptions
R real field C complex field
A,B,D. sets |A] the number of elements of set A
a,b,c, - scalars Im(a), Re(a), Conj(a) imaginary part of a, real part of a, and conjugate of a, respectively
a, b, c, vectors [al;. a. i-th element of @
A, B, C, matrices a; ;. [Ali (i, j)-th element of matrix A
[A];., a. the i-th row vector of A [A].;. a.; the j-th column vector of A
0 null tensor I identity matrix
Fy N x N DFT matrix A" conjugate transpose of A
A— B B can be obtained by elementary row or column transformations of A A B.C tensors
A the result of DFT on .A along the 3-rd dimension [Aiy i ins Qi g i (i1, 42, -+ ,ip)-th element in A
[ Al i (i1, i)-th tube [Aliys [ A g [Alig | i1-th horizontal slice, io-th lateral slice, and i3-th frontal slice, respectively
Al pseudo-inverse of A A A A = bdiag(A), A; = [A4]..;
AT frontal slice-wise conjugate of A € C*/2%%s i, [ATY]. ;= [A] fori=1,2,- I3 AT, AT A" — L7Y(L(A)") and AT = ifft(A™, [], 3), respectively.
A, B,C functions A B, C ordered sequences

the application of tensor product-based rank in tensor recovery, involving TPCA (Tensor

Principal Component Analysis), TRPCA (Tensor Robust Principal Component Analysis),

and Tensor Completion (TC), because of its superior performance in studying the low-

rankness of the tensor data. Subsequently, the optimization algorithms for solving the convex

and non-convex approximation of these models and their variants have been introduced.

Several typical applications in computer vision of these models (including color images and

video denoising, image inpainting, and video background modeling) will be introduced in

the final. I have summarized the symbols in this dissertation relating to matrices, tensors,

and sets in Table Some related notations and definitions are provided in the Appendix

for detailed explanations, and I will utilize footnotes to indicate their location.
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2.1 Tensor Rank

In matrix recovery, the rank function, i.e., rank(-), is commonly employed to assess the
correlations between the columns and rows of the matrix, i.e., the low-rankness of the matrix.
As a result, rank(-) has been utilized in early works [37, 8] to address the tensor case by
transforming the tensor into 2D matrices. However, taking the color image with size of

512 x 512 x 3 as an example, when we transform a tensor into the matrix

Y’ Y1 Y o Ysio

YO | =1 vl v Y5 | 2.1

Y’ Yoy o Yo
the essential structure in ( Yyl yz ) for k = 1,2,---,512 will be lost after vec-
torization, where Y™ = ( YooYy o Y ), Y9I = ( v oyl o oyl ) and
Yt = ( VLA T R VLN ) are RGB channels of the image, respectively. Besides, some

correlation information between different channels will be lost, such as the correlation
between y© and yj.

Therefore, three different types of tensor rank functions, including CP rank, Tucker rank,
and tensor tubal rank, are proposed to explore the low rankness within the tensor data more
accurately. The inspiration for these three tensor rank functions comes from three equivalent

definitions of matrix rank, which are as follows:
D1: the minimum number of rank one decomposition of the given matrix;
D2: the number of orthonormal column (or row) vectors of the given matrix;

D3: the number of non-zero singular values of the given matrix.

13



In this section, we are going to introduce these three different definitions of tensor rank

function in turn.

2.1.1 CP Rank

From the D1, a matrix X € R**!2 with rank R can be decomposed into

R
X=> a’a? =} aVca?, 22)

r=1 r=1
where at’) € RL for 7 = 1,2, and the symbol o denotes the outer product defined in
Definition Canonical Polyadic (CP) Decomposition can be obtained by extending (2.2))

to the tensor case[31} 32], which is introduced in Definition [2.1]

Definition 2.1. (Canonical Polyadic Decomposition) For A € RIV12X*In the Canonical

Polyadic (CP) Decomposition of A can be denoted as

R
A = Z a,E.l)oa,S,Q)o‘ . 'Oa£h) f— Zgr’nmﬂ‘ufnl)oufz)o. . .oufnh) = g)(lU1 X2U2X3. . 'XhUha
r=1

r=1
(2.3)
where G € RFE*FxR s called as core tensmE] being diagonal tensor whose (r,r,--- | r)-th
(k) (k) (k)
. 1 2 h a a a
element is g,.,.... . = Ha$= )H2Ha£ )Hz e Ha$ o and U, = (= = =
laill2" llas™ll2 llag ll2
R*R js g matrix with orthogonal columns for k = 1,2,--- | h.

The symbol X, in (2.3)) denotes the Mode-n product defined as follows.

Definition 2.2. (Mode-n product)[48] Let A € RIV2>xIn gqnd B € RE*In Then the

mode-n product of A and B is defined as C = A x,, B € RV X InoixIxlni=xIn yyhere

(A X Bliy iyt in = 3 Air s i [Bli,- 2.4)

in
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Figure 2.1: Illustration of CP Decomposition for a third-order tensor.

Figure 2.2: Illustration of the Kiers Method-Based Mode-n Unfolding for a third-order

tensor.
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From the definition of Mode-n product, we know that C,) = BA, if C = A x,, B,
where A, is Kiers Method-Based Mode-n Unfoldingﬂ of \A. To enhance understanding,
I give illustrations of CP Decomposition and Kiers Method-Based Mode-n Unfolding in
Figs.[2.1{2.2] respectively.

Based on CP decomposition, Kolda and Bader [43] have adopt the minimum number of
tensor rank-one decomposition (CP decomposition) of the given tensor X € RItxf2x-xIn
as the CP rank:

R
rank,(X) = min{R|X = Za,{l) caPo---0a™ a?) € Rl forj=1,2,---  h}.
- (2.5)
From (2.5), it is evident that the definition of CP rank is equivalent to the rank function
when h = 2. However, computing the CP rank is generally NP-hard, which greatly restricts
its application in tensor recovery. Therefore, a new way of defining the tensor rank based on
Tucker Decomposition is proposed, and it has received more extensive attention compared

to the CP rank.

2.1.2 Tucker Rank

Definition 2.3. [[72] (Tucker Decomposition) For A € RV 2XxIn the Tucker Decomposi-

tion of A can be denoted as

Ri R Ry,
A=Gx U xUyx3 - -x,Up = Z Z e Z grlym...,rnug)oug)o- . -ouq(ni)7 (2.6)
ri=1rqo=1 rp=1
where the core tensor G € RV B2xFu s fyll tensor, and U, = [ugk), uék), e ,ug} €
R*Bx js g matrix with orthogonal columns fork =1,2,--- | h.

! Here, the diag elements of G play the similar roles as singular values in the matrix.
2 Please refer to Definition for the specific definition of Kiers Method-Based Mode-n Unfolding.
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A

Figure 2.3: Illustration of Tucker Decomposition for a third-order tensor.

To better understand Tucker Decomposition, I give its illustration in Fig. [2.3]

According to the definition of Mode-n product, we can see that there has a matrix
H e RbvInthopredixvdn-ilner-In guch that A, = UnA(n)H, where A = G x;
U, x3U;y X3+ X1 U,_;. Thus, we have rank(A,)) < R,(1 < n < h). The Tucker

rankE[@]] of tensor A is defined as
ranki, (V) = (rank(A()), rank(A)), -, rank(Ap)).

Comparing definitions of CP Decomposition and Tucker Decomposition, it can be easily

concluded that

rank(A,) < rank.,(A)(1 <n < h). 2.7

Therefore, if LA is a low CP rank tensor, A, should be low rank forn = 1,2,--- | h.
Based on the Tucker rank, Gandy et al. given a new tensor rank function that is defined as

ZZ=1 rank(A,) [25]. By considering different unfolding modes, this tensor rank function

3 1In some literature [48], it is called as the multilinear rank or n-rank.
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can effectively characterize the correlation information across different tensor slices. It
allows for the incorporation of inter-slice relationships, enhancing the ability of the rank
function to capture the underlying structure of the tensor. Taking into account the variation
in the low-rankness of A, for different n, Liu et al. [45] give a weighted sum of the ranks
of the unfolding matrices >"_, aprank(A,), where a,, (n = 1,2,---  h) are weight
parameters satisfied 22:1 a, = 1.

It is worth noting that the weights play an important role in the weighted sum of ranks-
based methods, and the best choice for the weights is unknown if without any prior. Thus, a
new tensor rank based on the maximum rank of a set of unfolding matrics is proposed to

promote the low-rankness of unfolding matrics of the recovered tensor [94].

2.1.3 Tensor Rank Based on Tensor-Tensor Product

Recently, the rank based on the tensor-tensor product (t-product) has received more and
more attention because of its effectiveness in tensor recovery [33}97]]. The t-product of any

two third-order tensors is defined as follows.

Definition 2.4. (t-product) [42] Let A €¢ RI>*2%Is qnd B € RI2X1*I3_ Then the t-product

A x B is defined to be a tensor of size I, x L x I3,

A « B = fold(bcirc(\A) - unfold(B)), (2.8)
where
Al Al (Al
| A |
[ AL [A]..1



Figure 2.4: Illustration of t-SVD for a third-order tensor.

[A]:,:,l
Al

wnfold(a) = | | e e
[‘A]:,,Ih

and fold(-) is its inverse operator i.e., fold(unfold(A)) = A.

Then, the tensor version of Singular Value Decomposition (t-SVD) can be given based
on the t-product. From [50], we know that any tensor A € R{1*/2X/3 can be factorized as
A =U xS+ V7T as illustrated in Fig. where U € RIvIxIs and Y € RE*12X1s gre
orthogonalf’} and & € RI**/2x1s s a f-diagonal tensoff} As C = A« B implies C = A0, B
from [50], we can calculate the t-SVD of A by A=U0O f So f \7Tf, where ©; stands for

frontal slices product defined as follows.

Definition 2.5. (Frontal slices product) For A, B € C'"*12xIs the frontal slices product of

A and B is defined as C = A ©y B, where [C]..;, = [A]..i5[B]..is 13 =1,2,- -+, .

Algorithm [2.1]| presents the details of computing t-SVD for a given tensor Y.

After obtaining S by t-SVD, we can define the rank of A as the number of non-zero

4 Please refer to Definition |A.18|for the specific definition of the orthogonal tensor.

5 Please refer to Definition |A.19|for the specific definition of the f-diagonal tensor.
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Algorithm 2.1: t-SVD [50]
Input: Y € RIxxh x> (.

Output: U, S and V.

1. Compute the result of DFT on Y along the 3-rd dimension by using the Matlab
command Y = fft(, [, 3).

2. Compute each frontal slice of I, S and V from Y by

fori=1,.., |2 do

[U;,8:, V] =SVD(Y));

end for

fori= |8 +1,--- I;do

U, = Conj(U (15-i+2));

S =81, iso;

Vi =Conj(Vi,_is2);

end for

3.U =ifft(U, [],3), S = ifft(S, [, 3) and V = ifft(V, [}, 3), where ifft is the

inverse operation of fft.

singular tubes in S:

rank (A) = [{il[S]ii; # 0} = [{il[Sli.i; # 0} = [{il[S]six # 0}, 2.9)
which is known as tensor tubal rank [50]. The first equality in (2.9) follows from S =

Sx3F,and S =S8 x3 F;gl, where F'y, is the I3 x I3 discrete Fourier matrix. And the

1 I3

second equality holds from [S];;1 = - >_ /2,

[S];.;.;- Additionally, considering the number
of non-zero singular elements in S, we can define the rank of a tensor as
1, .. = 1 _ 1 )
rank,(A) = [—]{(z,z, i3)|[S)iiis # 0} = j_—rank(A) = [—rank(bcn"c(A)), (2.10)
3 3 3

20



which is known as the average tensor rank [50]. The last equality in (2.10) holds from
the property of the DFT [50]. From rank;(.A) = [{i|[S];;. # 0}| and rank,(A) =

1—13|{(z, i,13)|[S]iiis # 0}, we can easily conclude that

rank,(A) < rank(A). (2.11)

Besides, from rank,(\A) = +~rank(bcirc(.A)) and (2.7), we have

I3

rank, (A) < maxrank,(A) < rank.,(A). (2.12)

Therefore, the low average rank assumption is more easily satisfied in the real world [S0].
Furthermore, from (2.9) and (2.10), we can observe that the tensor product-based rank

allows us to analyze the low-rank properties of [A]. . ;, that correspond to different frequency
information from the 3rd direction of A for different i3, simultaneously. Specifically, [A] s
for small i3 captures the low-frequency information within all [A];, ;, ., representing the
small changes in [A];, ;, ., while [A]. ., for larger i3 captures the high-frequency information
within all [\A];, ;, ., representing the fast-changing parts and noise in [A];, ;, .. Therefore, the
tensor product-based tensor rank can effectively distinguish the detailed information from
the noise within the tensor.

Drawing inspiration from the expression C = A+ B = ((Ax3F,) Of (B x3F,)) X3
FI_;, various definitions for tensor product and tensor rank can be established by replacing
F';, with other invertible linear transforms. In this dissertation, the tensor average rank and

tensor tubal rank are referred to as DFT-based methods due to their reliance on the Discrete

Fourier Transform (DFT).

Definition 2.6. (t-product induced by invertible linear transform) [52]] Let L : RIv*2x1s
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R >12%Is pe g invertible linear transform such that

which satisfies

L"L=LL" = (. (2.14)
Here, (1, > 0 is a constant. Its inverse mapping is defined as
LA =Axs L. (2.15)

For A € RIvXIs gnd B € RE2XEX0 ) the t-product based on the invertible linear

transform L is defined as
Axp B=L"(L(A) ©; L(B)). (2.16)

The computation of the corresponding t-SVD is given as follows can be obtained by

Algorithm [2.2] The tensor tubal rank and tensor average rank based on the invertible linear

Algorithm 2.2: t-SVD induced by the invertible linear transform L [52]
Input: Y € RIvx2xIs )\ > .

Output: U, S and V.

1. Compute Y1, = L(Y).

2. Compute each frontal slice of U, S and YV, from Yy, by
for:=1,...,I5do

HaL}:,:,z‘a [gL]:,:,ia D—)L]:,:,i] = SVD(D_)L}:,:J);

end for

3U=L"*'UL),S=L*(Sr)andV = L }(Vy).
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transform L are defined as

rank; 1, (A) = |{i|[SL]ii. # 0},

and
I3

rank, £ (A) = {0, [Sehie # 0} = 7 > rank(( ...

respectively. The invertible linear transform L in (2.16]) can be the Discrete Cosine Transform

(DCT) and Random Orthogonal Matrix (ROM) [52].

2.2 Low-Rank Tensor Recovery Based on t-Product

The rise of low-rank models in recent years started roughly with introducing of the matrix
completion (MC) problem [9, [10]. But in fact, principal component analysis (PCA) [76]
was given and widely used in data dimensionality reduction long before MC was proposed.
In this part, I will introduce three basic tensor recovery models based on the tensor average
rank that extend from the matrix models, including PCA, Robust PCA, and MC, to recover

a low-rank tensor from the observation tensor with various perturbations.

2.2.1 Tensor Principal Component Analysis

Assuming Y is a tensor data with small noise perturbation, based on the low-rank prior
in the tensor data ), we have ) = X + £ € RI*2xIs where X is low tensor average
rank, and £ represents the noise and redundant information in the tensor data. The goal of
Tensor Principal Component Analysis (TPCA) is to look for a low-rank approximation and

approximately recover the tensor data from the noised observation Y, thus can be formulized
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as

1
Xopt = argmin Arank,(X) + §||y — X%, (2.17)

XERI *xTaxI3
where X is low rank tensor, and A > 0 is parameter to balance the low-rankness and fidelity
of X. Form [93], we have X op; = [Uy].14[Sv)1k14([Vylan)t, where Uy, Sy, Vy
can be obtained by SVD of Y and k is the minimal integer such that [Sy s > V2. Since
the information of the data is concentrated in the components corresponding to a few largest

singular values [64, 50], we can remove the noise and redundant information in the tensor

data by solving (2.17).

2.2.2 Tensor Robust Principal Component Analysis

In TPCA, the Frobenius norm is imposed on the tensor £ denoting the noise within the data
to characterize the magnitude of small noise perturbation. By using the Frobenius norm,
the principal components are robust to small noise perturbation, but sensitive to the outliers
[50]]. Based on the sparsity prior to the outliers, for given tensor data P € R/1*/2%/3 Tensor

Robust Principal Component Analysis (TRPCA) [50] is given as
1211;1 rank, (L) + \||S|lo st. P =L+ S, (2.18)

where L is low-rank and & is sparse. Compared to the Frobenius norm, the ¢y-norm can
characterize the magnitude of the sparse tensor better.

TRPCA aims to exactly recover the low-rank tensor from tensor data with gross corrup-
tions. When both gross sparse errors and small entry-wise noise appear in the tensor data
P,P =L+S+ Eholds, where S and € (||€||r < I) stand for the gross sparse errors

and small entry-wise noise, respectively. The tensor version of Stable Principal Component
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Pursuit (TSPCP) [103] can be employed to handle such cases:
1
win [P — £ — S|[} + arank, (£) + S l, (2.19)

which can be converted to TPCA when v — oo.

2.2.3 Tensor Completion

From the above discussion, TRPCA and its variant (TSPCP) can effectively handle scenarios
where gross sparse errors are present and the support set of noised elements is unknown. In
situations where the support set of noised elements is known, the TRPCA problem can be
transformed into a Tensor Completion (TC) problem [96} 51]]. The goal of TC is to recover
a low-rank tensor X from tensor data with missing entries.

Suppose M € RI1*12%I5 j5 an approximate low tensor average rank tensor, and Pg, is a
linear project operator on the support set {2 composed of the locations corresponding to the

observed entries in M, i.e.,
{M]i17i27i37 if (i17i27i3> < Qv
[PQ<M)]i1,i2,i3 -
0, if (i1,19,13) ¢ Q.

To recover a low-rank tensor X that satisfy Po(M) = Po(X), TC can be formulated as
m{_\i{n rank,(X)  s.t. Po(M) = Pq(X). (2.20)

If M is contaminated by the small entry-wise noise,we can express it as Po(M) =
Po(X) + Pq(E), where & represents the noise tensor. To handle this scenario, Robust TC
(RTC) is proposed, which is formulated as follows:
1
min Arank, (&) + 5HPQ(M) —Po(X)|5. (2.21)
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Since rank,(-) and ¢y norm involved in TRPCA, TSPCP, and TC are discrete that lead to

the NP-hard problems, we consider their convex and non-convex approximation in the next.

2.2.4 Convex and Non-Convex Approximation
2.24.1 Convex Approximation

The core idea of convex approximation adopted in low-rank recovery is using the convex
envelopes of the tensor average rank and /y-norm to replace the tensor average rank and
lp-norm in the tensor recovery model, respectively. In [50], Lu et al. have proved the tensor
average norm defined as || A||., = % | A]|. is the convex envelope of the tensor average
rank within the unit ball of the tensor spectral norm, where the tensor spectral norm of A is
defined as || A|, = || Al]2.

Therefore, the convex approximation of TRPCA and TSPCP can be written as
1211‘?||£||*+)\||SH1 st P=L+S8 (2.22)
and
!
min =[P — £ — 8|} + al|L]lsa + 7S], (2.23)
LS 2
respectively.
For TC, its convex version can be formulated as

maifn | X« st Po(M)=Pq(X). (2.24)

Since (2.22)), (2.23)) and (2.24)) are convex, we can use an iterative algorithm to solve
them, which will be introduced in the next section. Because of the orthogonal property of
the invertible linear transforms, some essential properties in matrix recovery models are

satisfied in (2.22) and (2.24) as well, such as their exact recovery guarantee [96}, 50, 51]].
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Table 2.2: Examples of surrogate functions of ¢y, where v > 0.

Name G(z)
¢, 23] P, 0<p<1
Geman [27]] ﬁ
Laplace [71]] (1 —exp(—2))
LOG [57] log(y + )
Logarithm [24] m log(yz + 1)
ETP [26] et

2.2.4.2 Non-Convex Approximation

Although the exact recovery of convex approximation-based methods is guaranteed in theory
[52]], the conditions for the exact recovery are hardly met in the real world. Besides, the
convex approximation-based methods treat the singular values with an equal penalty, leading
to the over-penalization of large singular values. A number of non-convex-based tensor
recovery methods have been proposed to solve this issue [39, (74,138, 44,84, 36, 68]]. Kong et
al. [44] have proposed a new tensor Schatten-p norm for getting a better approximation to the
tensor nuclear norm, leading to a better tensor completion performance. The corresponding
theoretical analysis has provided the performance guarantees for the resulting model. Jiang
et al. proposed a non-convex approximation named partial sum of the tensor nuclear norm
(PSTNN) that only penalizes the small singular values and leaves the large ones to preserve
the low-rank structure of the tensor effectively [39]]. Furthermore, Xu et al. [84] proposed
a non-convex surrogate strategy for tensor multi-rank by using the Laplace function, in

which the weight for each singular value is updated adaptively. The basic idea of these
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non-convex-based tensor completion methods is to replace the tensor average norm with its
non-convex surrogate functions. Therefore, the non-convex approximation of TRPCA and

RTC can be summarized in the following models:
I?ingEH*,g—i-)\HSHg st.P=L+S, (2.25)

and

, 1
min A Xl + 5 [|Pa(M) — Po(X)|I%, (2.26)

respectively. Here, [|Xl.g = 7, 370, G(0:(X). ISllg = 32, 324, 325, G((Slivsinia)- G -
R* — R™ is an increasing function listed in Table and r = rank(X).

As stated in [[74], if select a proper 7 in G(-), we have 0,(X ;) < G(0;(X;)) < 1 for

oi(X ;) < 1, which implies
1]+ = [[ X[« o] < [ Xl < rank,(X) < rank,(X)

on the set {X € RI"*2xI)| x| < 1}. Therefore, it can be concluded that || - ||.g is a
better approximation of tensor average rank and tensor tubal rank than tensor average norm
and tensor tubal norm. The related non-convex optimization algorithms were proposed to

solve the resulting generalized non-convex approximation of TRPCA, TC and their variants

[53, 174, 93].

2.3 Optimization Algorithm

In the following, I will introduce several iterative algorithms, which are commonly used in

the optimization problem of tensor recovery.

® From [50], we can see that tensor nuclear norm is identity to tensor average norm.
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2.3.1 Convex Algorithm

From the mathematical formulations of the above tensor recovery models, including TRPCA
and TC, we encounter scenarios where multiple variables are involved. Since the optimiza-
tion for the multiple variables simultaneously could be expensive in practice, we adopt
iterative optimization methods to solve for the optimal variables. Taking and
as the examples, we are going to introduce two basic iterative optimization algorithms, in-
cluding the Block Coordinate Descent (BCD) Method and the Alternating Direction Method
of Multipliers (ADMM) and their application in convex optimization problem of tensor

recovery. And there are two convex sub-problems involved in:

arg min ’V|!X|!1+—|D’ X|[%, (2.27)

XERIl XIpxIg

and

argmin af| X||. +—||y X3 (2.28)

XGRJlXIQXId
The optimal solution of (2.27) can be obtained by soft thresholding shrinkage operator

(Y — 7)4., each element of which is defined as max([Y] — 7,0). And the optimal

11,12,13

solution of (2.28)) can be obtained by the following conclusion.

Theorem 2.1. [50] For any A\ > 0 and Y € RU*E2XE | then the tensor singular value

thresholding operator obeys

D(Y,\) € argmin \||X|. +—||y X%, (2.29)

XGRIl xIgxI3

where D(Y, \) is obtained by TSVT (Algorithm2.3).
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Algorithm 2.3: Tensor Singular Value Thresholding (TSVT) [S0]
Input: Y € RIvxxh x> (.

Output: D(Y, \).

1. Compute Y by performing DFT on ) along the 3-rd dimension.
2. Perform matrix SVT on each frontal slice of ) by

fori=1,..., |2 do

[Uz‘; S, ‘71’] = SVD()—]z’);

end for

fori= |8 +1,--- I;do
W, = Conj(W,_i12);

end for

3. Compute D(, \) by performing inverse DFT on W along the 3-rd dimension.

2.3.1.1 Block Coordinate Descent Method

Let us consider the unconstrained problem

min _ F(Xq, Xo,--, X,). (2.30)

X1,X2,,Xn

According to the block coordinate descent method (BCD) framework, we can solve (2.30)

iteratively as follows.

Given (th), Xg), e ,Xff)), we can get X,(:H)(k: =1,2,---,n) by
X\ — arg min FxXU o xD x, xW X W), (2.31)
k
producing the next iterate (thﬂ), thﬂ), e ,Xﬁf*l)).
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Here, we take the problem (2.32)) (Tensor Stable Principal Component Pursuit) as an

example to explain BCD.
1
win o[ P = £ = S|+ al £]. + S . (2.32)

From the framework of BCD, the problem (2.32)) can be iteratively solved as follows.

Stepl Given £, we update S by
S — arg min 2P — £ = S|} + al £ + S]]
— argmin | P - £ = S| + 1|51l
= (P - L0 _ 7 (2.33)
Step2 Given SV, we update £ by
£ — axgmin 2P — £ = ST+ €] + 45,
— argmin [P~ £ - S+ all£].
=D(P - 8" ). (2.34)

Therefore, we can get the optimal solution of (2.32)), i.e., (f,, S ), by repeating the above

steps until the algorithm convergence.

2.3.1.2 Alternating Direction Method of Multipliers

Let us consider the following constrained problem:
Iil%lfﬂA) + F(B), st. Gi(A)+ G2(B) = C. (2.35)
The augmented Lagrangian function of (2.35]) can be written as
Lu(A.B.Y) = Fi(A)+ Fo(B) +{Gi(A) +Ga(B) ~C. Y )+ 5|61(A) +Ga(B) ~Cl.
(2.36)
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where ¢+ > 0 is parameter, and Y is the Lagrange multiplier. According to the framework of
the alternating direction method of multipliers (ADMM), we can solve (2.33) iteratively:

Given (A”, BW Y we can get AT and BTV by
A — argjnin L,(A, B(t)7 Y(t)) (2.37)

and

B = argmin £,(A) B, Y "), (2.38)
B

respectively.

Given (A“TY, B#D v ®) we update Y by
Y(t+1) _ Y(t) + ,u(gl (A(t+1)) + g2(B(t+1)) . C(t+1)) (239)

From (2.22)) and (2.24)), we can see that the convex approximation of TRPCA and TC

have the form (2.35)), and thus can be solved by ADMM further. Here, I take (2.22)) as an
example to explain the framework of ADMM. The augmented Lagrangian function of (2.22))

can be written as
LL, S V)= L+ NSl +(£+S=P.Y) +LIL+S Pl (240)

where p > 0 is parameter, and Y is the Lagrange multiplier. Then, we can solve (2.22)
iteratively:

Step 1 Given (5", ¥)), we can get £V by
£+ arg min EM(E,S(t), y(t))
C
= argmin || L], + (L+8 —P,Y) + %Hc +S8-P|%
C
in 1 1 (0 Lo
= argmin —|| L[, + | £+ 8Y — P + =YVI3,
C U 2 L

_p—8W 4 p - Lyn 1 (2.41)
e
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Step 2 Given (L™, Y1), we get SV by
S = argmin £,(£, 8, Y1)
s
- arg;nin)\HSHl (LY 18 —P YY) ¢ gHE(”” +S - Pl
A Lt L2
:argmln—HSH1+§||£ +S-P+ =YY%
s 2 U
(t+1) Lym A
et Ly A )
7 p
Step 3 Given (LY, SUHD Y1) we update Y by
y(t+1) — y(t) + M(‘C(t+1) + S(t+l) . P) (243)
Step 4 For given p > 1, we update p(*+1) by

p = min(pp, 1), (2.44)

where [i is the upper bound of f.
Therefore, we can get the optimal solution of (2.22)), i.e., (ﬁ, S ) by repeating the above
steps until the algorithm convergence, where ¢ is for iteration number of the algorithm. The

stop criterion in the algorithm is set as

”rP . L:(t-i—l) . S(H_I)HF

dual_norm

)

where dual_norm = max(||P|l2, || P||)-

2.3.2 Non-Convex Algorithm

In this subsection, I am going to introduce several optimization algorithms including Iterative
Reweighted t-TNN Algorithm and Generalized Tensor Singular Values Thresholding-based

iterative algorithms for solving the non-convex approximation of the tensor recovery models.
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2.3.2.1 Iterative Reweighted t-TNN Algorithm

By extending Iteratively Reweighted Nuclear Norm (IRNN) algorithm [53]] to the tensor
case, Wang et al. have proposed Iterative Reweighted t-TNN Algorithm (IR-t-TNN) [[74]] to

solve the following general tensor recovery problem:

min A X|.g + L(X), (2.45)

X cRI1xIgxI3

where G(-) satisfies Assumption and L(-) is a loss function such that [|[VL(X) —
VLY)|lr <UL)||X — Y| F for some constant /(L) > 0 (In other words, £(+) is Lipschitz

gradient continuous.).

Assumption 2.1. G(-) : [0, +00) — [0, +00) satisfies
Al G(z) is a continuous, monotonically non-decreasing, and concave function,
A2 G(0) =0,lim, @ =0,

Since G(-) is concave on [0, +00), we have

G(0:(X;)) < G0 X)) + 1wl (0:( X;) — 0o X)),

/[/717]

®)

where w;; ; is the supergradient of G(z) at z = 0;(X gt)). Therefore, we have
Shui ®
’ _ _
12 < 12D Nleg +D > wii (0 X;) — 0u( X37)).
k=1 j=1

On the other hand, we have

L(x) < LX)+ (VL(20), 2 - 20) + Bl - 203,
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where p1 > [(L). Therefore, Wang et al. turn to solve the following relaxed problem:

i I3

A0 =argmin \(| X g + 30D wisg(01(X;) - (X)) + £(x®)

k=1 j5=1

(VL) 2 - x0) + Dlx - x|

—argmmzzww (VL) 2 - x0) + D)la - x|
k= 13 1
T] 1
—argmm)\ZZw“] (X)) %HX—X(”—}——VE(X“))H%. (2.46)
L
k=1 j5=1

Since w'") . is the supergradient of G(z) at z = O'Z'(X(t)> 0< wﬁ] <. < w,(fzw <..- <

0,8, —

®)

Wy (11 Eo)min(1n 1) O = 1,25+ , I3) from the antimonotone property of supergradient
[53]]. Thus, we have
1
XD =D (XD — ;vqx% A), (2.47)
where
Dw(¥,A) = argmin A X, + —||3’ X |7 (2.48)
XGRIl XIgxIg

And Weighted Tensor Singular Value Thresholding (WTSVT) has been proposed to solve
@A3): Dw (Y, ) =U x Sy VT, where Syy\ = ifft((S — AW) 4, [], 3) [74, 53], and
U, S, and V can be obtained by the t-SVD of Y: Y = U * S * %

Taking £(X) as %HPQ(M) — Po(X)||%, we can solve the non-convex approximation

of RTC by IR-t-TNN (as well as its convex approximation).

2.3.2.2 Generalized Tensor Singular Values Threshold (GTSVT)-Based Iterative

Algorithms

In the IRNN algorithm, the both ||X®||, g + S/, ]13 L w (oi(X;) — ai()_(y))) and

4,2,

LXD)+(vLe(xW), x—xW) + Ellx — XY, are used to replace || X||.g and L(X),

35



respectively, for easy solving of (2.45)).
Inspired by GSVT algorithm [54], we can utilize a tighter estimation for the objective

function in (2.45]) than the objective function in (2.46), and solve (2.43) iteratively as follow:

XD — arg;nin)\HXH*,g + LX)+ (VL(xXW), x —xW) + %HX — x|
—argmmAllé\fll*g +(VLAXD), 2 —xD) 4 —IIX XD,

—argmln)\||X||*g+—||X x4 Vﬁ( )12, (2.49)

Therefore, Zhang et al. [93] provides an algorithm (Algorithm [2.4) that solves the

following problem directly:

arg min A|!X||*g+—||3’ X%, (2.50)

XGRIl XIgxIg
which can be used for solving (2.43)), and the non-convex approximation of other tensor
recovery models, including TC, TRPCA, and TSPCP (as well as their convex approximation).

The optimal solution of (2.50) has been analysed in the Theorem [2.2]

Theorem 2.2. /93] For any A > 0 and Y € R1"*2XI if G is increasing on [0, +00), then
the tensor singular value thresholding operator obeys
Do V) € armin N X[+ 2| - X[ @51)
XGRII XIgxIg
where Dg(Y, \) is obtained by GTSVT (Algorithm[2.4), and T5(S:, \) in Algorithm [2.4)is

defined as

I I

To(Si, ) = argm1n—||S SHF—l—)\ZZg |8i1i,)- (2.52)

SeRrRn XIZ i1=112=1
The problem (2.52) is a basic optimization problem in low-rank recovery and is widely

studied. For example, in [54], Lu et al. propose Algorithm [2.5] that that solves (2.52) to
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Algorithm 2.4: Generalized Tensor Singular Value Thresholding (GTSVT) [93]]
Input: Y € RIvxxh x> (.

Output: Dg(Y, \).
1. Compute Y by performing DFT on ) along the 3-rd dimension.
2. Perform matrix SVT on each frontal slice of ) by

fori=1,..., |2 do

end for

fori= |8 +1,--- I;do
W, = Conj(W,_i12);

end for

3. Compute Dg(Y, \) by performing inverse DFT on W along the 3-rd dimension.

global optimality. Furthermore, Zhang et al. [90] develop a fixed point algorithm (Algorithm
[2.6) that solves (2.52) to global optimality with a guaranteed super-linear convergence rate,

when the surrogate function G(-) satisfies Assumption
Assumption 2.2. G(-) : [0,4+00) — [0, +00) satisfies A1 — A3:
Al G(x) is strictly concave and increasing, and G(0) = 0;
A2 G'(z) is strictly convex;
A3 G"(z) is continuous on (0, +00).

Besides, from the introduction of the iterative algorithms including BCD and ADMM, we

can see that the basic idea of these iterative algorithms is to convert a complex optimization
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Algorithm 2.5: Lu’s work [54]
Input: A real number y > 0, a number of iterations x > 0 and a tolerance 7 > 0.

Output: z; = argmin, F,(z) = 3(y — z)? + A\G(|z|).
// Find 21 by fixed point iteration
Initialize a:g)) =y, xI(Jl) =7 (acI(JO)) andt =1.//J(x) =y — NG (x)

while [\ — 207V > 7 & t <k do
2 = ilar).

if a:(LtH) < 0 then
| return zy, = 0.

else
=t
end
Lett =t+1.
end

Compare F,(0) and F,,(Z1,) to identify the optimal solution zj .

problem into several optimization sub-problems, which can be easily solved. Based on that
idea, we can solve the non-convex approximation of the tensor recovery models by combing
ADMM (or BCD) with GTSVT.

Here, let us take ADMM as an example to solve the following problem.
min[|£].g + AISllg st P =L+S, (2.53)
The augmented Lagrangian function of (2.53) can be written as

['/i(‘c787y) = HE’

*g+W&b+w+S—PJA+$w+S—P%. (2.54)

Therefore, we can solve (2.53) iteratively:
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Algorithm 2.6: Generalized Accelerating Iterative Algorithm (GAI)

Input: A real number y > 0, a threshold A > 0, and a tolerance 7 > 0.
Output: 75(y, \) = xéﬂ

Let

(

Fy(@) = 5(y —2)* + 2G(z) ,

Ji(z) =y — AG'(z),
To(z) = Ji(z) — (T (T (@) =T (@) (T (@) =)
\

J1(T1(x))—2T1 (x)+z

ag + max{z|J{(z) = 1orx = 0}.
if 7, (ap) < 0 then
// Find Zg by fixed point iteration

Initialize xg)) —y,t+0

while |7, (71 (2)) = 27, (2) + 29| > 7 do
2t = @)

t—t+1

end

pa = (=)

else
| return Zg = qg

end

If 7,(0) > F,(Zg), return zf, = Z¢; otherwise return x¢, = 0.
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Step 1 Given (S, Y1), we can get L7V by
L) — arggnin L, (L, S(t)7 y(t))
=argmin —||L|l.g + =||L+ S P Y02
c 2 2 L
1 1
=Dg(—8Y +P - YW —) (2.55)
poo
Step 2 Given (L1, Y1), we get ¢+ by
S+ — arg;nin Eu(ﬁ(t+l)’ S, y@))
= ; é 1 (t+1) B l )12
= argmin —||S||; + = || £ +8—P+ Y2
E o] 2 1
= T(—L) P — ;y(t)’ 4, 256

where [Tg(—LTV 4P — Ly 2], 5 = To([—£D +P— LYW, 5, 2) by Algorithm

2.6
Step 3 Given (LY, D Y®)) we update Y by

y(t+1) — y(t) + M(‘C(t+1) + S(t+1) o P) (257)
Step 4 For given p > 1, we update x(“*1 by
o = min(pp, it), (2.58)

where [i is the upper bound of .

2.3.3 Tensor Factorization-Based Algorithm

From the above discussion, we can see that solving the convex and non-convex approxima-

tion of these tensor models requires computing t-SVD of a tensor with the size of I; X I X I3
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[69], which costs O(I1) 17,

( )I s+ 111513 log I3) and cannot be used to handle large scale tensor

data efficiently. To solve these issues, Zhou et al. [102] have proposed Tensor Completion

by Tensor Factorization (TCTF):
in, |X — AxB|r s.t. Po(M) = Pq(X), (2.59)

where A € RIv+xI B ¢ R*12xIs and k obtained by the rank estimation strategy [102]
is the estimation for the tensor tubal rank of M. The optimization problem (2.59) can be
solved by using ADMM. The total costs at each iteration of the algorithm is O (k[ I>15 +

I,1,131og I3), which achieved significant improved performance for the case of k < I(9).

2.4 Representative Applications

In this section, we are going to introduce several representative applications of TRPCA and

TC, including image and video denoising, image inpainting, and background subtraction.

2.4.1 Image and Video Denoising

With the development of multimedia, as a basic task in the field of computer vision, images,
and video denoising is always a research hotspot. The goal of image and video denoising
is to remove various kinds of noise from one or multiple noised images and videos and
preserve the details and texture information within the observed visual data.

In the past decade, a large number of image and video denoising methods have been
proposed [70} 20,160, 13,162, 15, 22,15, 2], in which the noise with specific distribution (such
as Zero-Mean Gaussian Noise and Zero-Mean Gaussian-Impulse Mixed Noise) are assumed

to approximate the noise in the real world. Generally speaking, the existing denoising

41



Figure 2.5: Self-similarity of natural image: there are some similar image patchs in one

image

methods are mainly classified into local methods [70, 20, 160, |13} 162} [15} 22]] and non-local
methods [55, 2]]. Local methods usually perform kernel convolution operations on the local
spatial domain of the noised visual data. Since the local methods do not use the global
information and structure in the visual data, resulting in blurring and losing of details
in the denoised images. In contrast, non-local methods often achieve a better denoising
performance by using the self-similarity property of natural images as shown in Fig.
[S]. For example, Buades et al. [S]] have proposed the Non-local Mean Method (NLM) that
greatly facilitated the development of the field of image denoising. The NLM makes full use
of the self-similarity of natural images, and the value of the center of the reference image
block can be estimated after a simple weighted average of these similar blocks, in which the
similarity is calculated by the Euclidean distance between the image blocks.

Inspired by NLM, a large number of non-local similar block-based image denoising
methods have emerged [56, (19, 16} 28, 91}, 92, 69]. The main idea of non-local block-
based image denoising methods is to improve the image denoising effect by exploiting the

similarity between different similar blocks of the whole image (or within a large domain).
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In addition, a potential assumption is that if the matrix formed by column vectorization

of those similar blocks is approximated to a low-rank matrix. This low-rank assumption

is directly or indirectly used in image denoising algorithms [56, 19,16, 28, 91]. However,

as stated in [92], it will lead to the loss of the spatial information within the image blocks

if staking similar blocks into the matrix. To deal with this issue, tensor-based denoising

methods have been proposed [92,169]], in which the similar blocks are stacked into tensors

instead of the matrix. The tensor-based non-local denoising methods consist of three basic

steps: patch grouping [13]], low-rank tensor recovery, and aggregation. The detail of each

step 1s explained as follows:

)

2)

Patch grouping: We divide the noisy data P into a set of overlapping images blocks.
Then, we search for K non-local similar image blocks of the given reference image
blocks across the whole data by utilizing block matching [[13]]. For the case of Zero-
Mean Gaussian-Impulse Mixed Noise, since the impulse noise will seriously affect
block matching results, Zhang ef al. [91]] give use the adaptive center-weighted median
filter (ACWMF) to detect the random-valued impulse noise before utilizing block
matching and introduce a characteristic tensor to record the position corresponding to

impulse noise.

Low-rank recovery: Stacking the obtained non-local similar image blocks and the
given reference image blocks together, we get a tensor P. For the case of mixed
noise, P, satisfies

P.SZX8+Zs+gsa

where X, is a clean tensor with low-rankness, Z, stand for small noise such as zero-

mean Gaussian noise, and £ is a sparse tensor composed of impulse noise within P.
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Therefore, we have
ILI:llél | Xl + A|Esll1 st ||Ps — Xs — Esllr <, (2.60)

where A is a penalty parameter to balance the low-rankness of X', and the sparseness

of €. The problem (2.60) can be converted to

. _ 1
(X, Es) = arg min a|| X« + Y||Esl|1 + §H'P5 — X —E|r. (2.61)
If A\ — o0, ||Es|lo — 0, and (2.6]) is converted to

~

1
X :argminHXSH*Jr§||’PS—XS||F. (2.62)
X

Therefore, in addition to the mixed noise, (2.61)) can be also used to deal with the case
of zero-mean Gaussian noise.

(3) Aggregation: We reconstruct the denoised image X by aggregating all the denoised

~

patches X5 together.

(4) Adding back a part of removed noise: To remain the image detail, we add back a

part of removed noise by
PoXtayP-X—E)

We repeat the above steps until the algorithm convergence. The whole progress is presented
in Fig.[2.6] From the above process, we can see that low-rank recovery plays a crucial role
in non-local image denoising. By replacing (2.61]) with other variants of TRPCA, we get

various non-local image denoising methods.
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Figure 2.6: Sequence diagram for image recovery

2.4.2 Image and Video Inpainting

The goal of image and video inpainting is to recover the images and videos from the observed
visual data with missing elements. Inspired by the non-local similar block-based image
denoising methods, Song et al. [67] have proposed the non-local-based image and video
inpainting method to make full use of the self-similarity property in natural images. The

detail of each step is explained as follows:

(1) Pre-processing: Since the missing elements in the images will seriously affect block
matching results, Song et al. [67] use a triangular-based linear interpolation algorithm
[75] to estimate the values in the missing positions. By doing this, we get a preliminary

estimate for the clean images, which is denoted as P.

(2) Patch grouping: Similar to the non-local image denoising method, we get a set of
overlapping images blocks by dividing the noisy data P, and then searches for K
non-local similar images blocks of the given reference image blocks across P by

utilizing block matching [13].

(3) Low-rank recovery: Stacking the obtained non-local similar images blocks and the
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given reference image blocks together, we get a tensor P, which satisfies
PQ(PS) = PQ(Xs)a

where X ; is a recovered tensor with low-rankness, and Py, is a linear project operator
on the support set {2 composed of the locations corresponding to the observed entries

in P,. Therefore, we have

~

Xs; = argmin || Xsl[.  s.t. Po(Ps) = Pa(Xs). (2.63)
X

(4) Aggregation: We reconstruct the denoised X by aggregating all the denoised patches

X, together.

Similarly, by replacing (2.63)) with other variants of TC, we can obtain various non-local

image inpainting methods.

2.4.3 Background Subtraction

The task of background modeling is to separate the foreground (moving objects) € and the

background X in a video P. Therefore, we have
P=X+E&.

Since the moving objects in the video occupy only a small portion of pixels, the tensor €
corresponding to the foreground in the video is sparse. Besides, since the static background
changes slightly, the tensor X corresponding to the background should be a low-rank tensor.
Therefore, background modeling can be regarded as a TRPCA problem [50], which is

formulized to
(X,€) = argmin | X, + A|E]1 st.P =X +E, (2.64)
X.E
where X is the separated background.
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2.5 Summary

In this chapter, I have introduced various tensor rank functions, namely CP rank, Tucker rank,
and t-product-based tensor rank. These rank functions correspond to the three equivalent
definitions of matrix rank, i.e., D1-D3, respectively. In other words, they can be seen as
extensions of the three equivalent definitions of matrix rank. Unlike the matrix case, these
three tensor functions are equivalent only when tensor order i = 2. Because of the superior
performance of t-product-based methods in studying the low-rankness of the tensor data,
we have mainly introduced several basic t-product-based-tensor recovery methods, their
optimization, and several representative application in computer vision, including color
images and video denoising, image inpainting, and video background modeling.

From the discussion on low-rank recovery-based non-local image inpainting and de-
noising, we can observe the critical role played by low-rank recovery models. By utilizing
different variants of TRPCA (or TC), we obtain various non-local image denoising methods
(or image inpainting methods). However, it is important to note that this dissertation does not
aim to provide specific image denoising or inpainting algorithms. Rather, the goal is to in-
vestigate an effective approach for defining the tensor rank function that better characterizes
the low-rank structure in tensor data. Therefore, in the remaining part of this dissertation,
when conducting experiments on data denoising and inpainting, we will not employ any
non-local strategies presented in Chapter 2.4. Instead, the entire noisy data (or data with
missing elements) will be considered as the observation tensor in the tensor recovery model,

such as P in (2.22), unless otherwise specified.
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Chapter 3

Handling Transpose Variability in

t-Product-Based Tensor Recovery

3.1 Introduction

Although the tensor ranks based on t-product are effective and widely used, there are still a
few limitations: (1) The tensor tubal rank is based on the Discrete Fourier Transformation
(DFT) in the 3-rd dimension of the tensor. As a result, the tensor tubal ranks of the resulting
tensors obtained by performing different transpose operators on the tensor may be different,
which may lead to the tensor recovery results relying on the transpose operators. In this
paper, this issue is referred to as Transpose Variability of Tensor Recovery (TVTR). A tensor
recovery algorithm has TVTR property if the results of the algorithm are relying on the
transpose operators. It can be reasonably imagined that some information within tensor data
(the relationship of various views from different dimensions of tensor data) will be lost if

only one dimension is considered in a tensor recovery algorithm with TVTR property. (2)
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Although it is proven that the true value of the models can be exactly recovered under certain
conditions for TRPCA based on ¢;-norm (i.e., relax ¢y-norm and rank function to £;-norm
and nuclear norm respectively.) These strong conditions often cannot be guaranteed in the
real world.

To overcome the aforementioned limitations, this paper focuses on the recovery of a
low-rank tensor from a third-order data tensor contaminated by both gross sparse errors
and small entry-wise dense noise. The contributions of this work are three-fold. First, to
our best knowledge, TVTR is firstly discussed in this paper. Second, to deal with TVTR,
a new tensor rank called Weighted Tensor Average Rank (WTAR) is given. Meanwhile,
WTAR is applied to the tensor-robust principal component analysis, and a new low-rank
tensor recovery model called Tensor Recovery based on WTAR (TRWTAR) is obtained. In
addition, we prove that the worst-case error bounds of the recovered tensor are established
by TRWTAR (in Theorem [3.3)). Third, inspired by the literature on non-convex optimization
23,157, 24, [71], 187, 126] (see Table @, this paper provides a general algorithm that solves
both the convex surrogate and a series of non-convex surrogates of the proposed framework
(not limited to the surrogate functions in Table [2.2]). The study results contribute to the
broad landscape of tensor recovery by delineating an effective measure of tensor rank and

providing theoretical and algorithmic advances in robust tensor recovery problems.

3.2 Transpose Variability in Tensor Recovery

It can be seen from Definitions [A.13] and [A.16] that the tensor tubal rank and tensor nuclear
norm are based on t-SVD, in which discrete Fourier transform is applied on the 3-rd

dimension of the tensor. Therefore, the transpose operations of the tensor directly affect the
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tensor recovery methods based on the two norms (including the tensor tubal rank and tensor

nuclear norm). An example is given in the following to illustrate this point: Let A € R?*2%2,

—0.1241 1.4090 0.6715 0.7172
in which [A]. | = A, =

1.4897  1.4172 —1.2075 1.6302
Definition 3.1. (Mode-1 conjugate transpose) The conjugate transpose of a tensor A €

Ch>I2xIs s denoted as A" € C*13x12 which is obtained by conjugate transposing each

of the horizontal slices.

Definition 3.2. (Mode-2 conjugate transpose) The conjugate transpose of a tensor A €
Ch*2xIs i denoted as A™ € C3*12%I which is obtained by conjugate transposing each

of the lateral slices.

Definition 3.3. (Mode-3 Conjugate transpose) The conjugate transpose of a tensor A €
ChxI2xIs js denoted as A" € C=2*1%1s which is obtained by conjugate transposing each

of the frontal slices.

For a third-order tensor A € R1*/2%% six tensors are obtained by all possible transpose
operations for A: A = (A7t € RIxlxls B = AT ¢ Rlaxlxh B, = (AT ¢
RExIsx By — AT ¢ RhxBxl B, — (AT)Ts ¢ RI%IxE and By = AT € RExNixs,
From the top row of Table it can be seen that the tensor singular values of A, A2,
and A" are different. Considering the following key optimal problem in low-rank tensor

recovery

. 1
D(Y,\) = argmin MN|X|, + =Y - X3, (3.1)

XGRIl XIgxIg 2
this is the proximal operator of the tensor nuclear norm. To solve the problem shown in

Eq.(3.1), Liu et al. proposed an optimal algorithm (see the Algorithm in [50]. The
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A

AT2

(AT2)Ts

AT1

(AT1)Ts

AT3

()

3.2988

0.4407

3.1631

0.9183

|

3.1631

0.9183

|

3.0859

1.2910

(

3.0859

1.2910

|

3.2988

0.4407

o (bcire(+))

3.7558
2.8417
0.5970

0.2843

3.7505

2.5758

1.2586

0.5780

3.7505

2.5758

1.2586

0.5780

3.3331

2.8387

1.5338

1.0482

3.3331

2.8387

1.5338

1.0482

3.7558
2.8417
0.5970

0.2843

Table 3.1: First row: the tensor singular values of six tensors that are obtained by all possible
transpose operations for 4. Second row: the singular values of the block circulate matrix of

the six tensors.

Algorithm [2.3] reveals that D(1B;, \) is not equivalent to the transpose of D(.A, ) for some
A, when o (A) # o (B;). Therefore, it can be concluded that the tensor nuclear norm-based
tensor recovery methods have TVTR property. Note that, as stated in [50], Eq.(3.1)) is

equivalent to

) 1
argmin || X || + 5”3’ - X|%.

XeRIl XIgxIg

DY, \) = (3.2)

Therefore, for the tensor average nuclear norm-based tensor recovery methods, a similar
conclusion can be obtained.

As discussed above, the effectiveness of the tensor recovery methods based on the two
norms (including tensor nuclear norm and tensor average nuclear norm) is affected by the
transpose operations on the data tensor, but this is ignored by traditional tensor recovery
methods. An intuitive approach to solve this problem is to consider all possible transpose

operations in the definition of tensor rank.

51



3.3 Proposed Methods

3.3.1 Weighted Tensor Average Rank

In this section, the TVTR is discussed in detail, and a new tensor rank is given to better

explore the low-rank structure within a data tensor.

Definition 3.4. (Weighted tensor tubal rank) Define weighted tensor tubal rank rank. (-)

as.

3
ranky(A) = Z oy rank, (AT, (3.3)
k=1
where ay(k = 1,2, 3) indicates the weights which sum to 1.
Definition 3.5. (Weighted tensor average rank) Define weighted average tensor rank

ranky, () as:

3
ranky,(A) = Z agrank, (A, (3.4)
k=1

where ay(k = 1,2, 3) indicates the weights which sum to 1.

Definition 3.6. (Weighted tensor nuclear norm) Define weighted tensor nuclear norm || - ||yt

as.
3
TA e = ol A™ ., (3.5)
k=1

where ai(k = 1,2, 3) indicates the weights which sum to 1.

Definition 3.7. (Weighted tensor average nuclear norm) Define weighted tensor average

nuclear norm || - ||y, as:

3
Ao = > al| A, (3.6)
k=1

where ai(k = 1,2, 3) indicates the weights which sum to 1.
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Property 3.1. For A € Rl *2x3 g (hcire(\A)) = o (bcire(A™)).

Proof.
AL AL, AL,
beire( ATS) — (Al [AlL, (Al .3
(AL AL AL,
(AL AL, AL 1,
(AL, AL, AL
N
AL AL AT 1
(Al Al LA 1,
| M A
Al r ALy - Al
(Al [AlLL (Al
— [A].““Q [A].““l [A]’”“?’ —beire(A)T. (3.7)
[, Al (A1
Therefore, Property 1 holds. [

Theorem 3.1. For A € R'*25 if oy = ap = a3 = 3, || Allwa = [ A" ||wafor s = 1,2, 3.

Proof. For s = 1, since (A™)"t = Aand (A™)2 = (A™)T, ||(A™) 40 = | A]lca =
1A e as [A™) 20 = 1(A)5]s0 = A ]|sq, and [[(AT)5],, = AT .0 by
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Property [3.1]
Therefore, [ AT oo — 50 1[(AT ), — LA™ o & NATY o AT _
> wa =13 *,a

3
3
Yo 3llA o = [l A

Fors = 2,since (A”2)T = (AT and (A™)"> = AL (A™) . = (A", =
A e AP s = A = [ Ao [ (AT . = [ A].,, by Property
B.1
Therefore, LA™ v = S1_, 41l (™). =

3
>t 31 A o

1A o + 1A o + AP
3

For s = 3, since (A™)" = (A™)™ and (A7) = (AT)", | A® 0 = 5y 51I(A™) 0 =
ICA™) e + 1CA) 2 o + 1A e A [ea + 1A ]l + (A ]

3 3

3
>t 51 A e

]

Since || A, = [|A]|.. as stated in [50], we have || A|lwa = ||A|lwt. Therefore, the

following theorem is derived.

Theorem 3.2. For A € RIVEXE jfo) =y = a3 = %, 1Al = [|,A™

wtfors =1,2.3.

3.3.2 Tensor Robust Principal Component Analysis with Weighted

Tensor Average Rank

Based on the definition of rank(-), TPRCA with weighted tensor average rank is defined

as follows:

Izligrankwt(ﬁ) + AIS]lo st ||P—L—=S|r <6, (3.8)
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where P = L + S + Z; L is low-rank; S is sparse, and Z is a small noisy perturbation
and || Z||r < 9. Since ranky,(-) and ¢o-norm is discrete, the continuous version of (3.8) is

considered, which is defined as follows,
1}:1i‘lsr_1||£||wa,g+)\||8||g st ||P—L—-S8|r <9, 3.9)

where || £lwag = 325y 55 3ok Gloi(beire(L))), [Sllg = 32, 4y 5, GI[S)ir i), and
G : RT — R is an increasing function. Note that all the surrogate functions of ¢, listed in

Table [2.2] satisty this condition.

Remark 3.1. From Property 3.1} we can get the same conclusion with Theorem 3.1 easily

Allvag = “ATS”vva,QfOT” A € RIxExXEs gpd

for || : ||wa,g; i-e., ZJCO(]_ —_ az — OZ3 — %’

s=1,23.

3.3.3 Tensor Recovery with Non-convex Penalty
3.3.3.1 /, Minimization Formulation

Taking G(-) in (3.9) as £,-norm, then (3.9) is turned to

wa,p

in [ £, + AISIE, st [P~ £~ S]r <3, (3.10)
where [ £, = i, 2 (S0, ou(beire(£74))5 )7, ri. = rank(beirc(£7)), and |85, =

wa,p

(D4, imia |[Sli i %)p. For convenience, (3.10) is referred to as TRWTAR-/,, (where TRW-
TAR and ¢, stand for Tensor Recovery with Weighted Tensor Average Rank and ¢,-norm

respectively). It is easy to see that, for p = 1, (3.10) reduces to
rggl]|£]!W3+A]\S]\1 st.||P—L—-8|r <9, (3.11)

which is referred to as Tensor Recovery with Weighted Tensor Average Nuclear Norm

(TRWTANN).
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3.3.3.2 Worst-Case Error Bound

Here, an error bound is established under the transformed ¢, minimization problem (3.10).

Lemma 3.1. /6] Let wy, wo, . .., w, be n positive numbers such that 22:1 wy = 1. Then,
for any real numbers s and t such that 0 < s < t < oo, and for any aq,...,a, > 0, we
have:

(ZwkaZ) < (Z wka;) g (3.12)
k=1 k=1

ifand only if a1 = as = - - - = ay,.

Theorem 3.3. Let (Ly,Sq) be the pair of true low-rank and sparse tensors, and L be
the solution to the optimization problem (3.10). If the average of the entries of the sparse
component 8 is bounded by T, and the carnality of the support 8 is bounded by m, then
T Y e,

. e L .
En(L) = ————— < \| —mgtty where A > 1, M =TI, Iy Remark IV = I,

I® =1 and I®) = I,
Proof. Let (ﬁ, S’) be the optimal solution of (3.10)), Z=P-8-L,and Z, = P-8y,—L,.

By optimality, we have

L]y + AP = 2 = LI, < [|Lollha, + AP = Zo = Lolls - (3.13)

wa,p pp — wa,p

Next, recall that a function F(-) is sub-additive if F(z + y) < F(z) + F(y). According to
the result in [63], a concave function F : [0, 00) — [0, 00) with F(0) > 0 is sub-additive.
Thus, for 0 < p < 1, F(x) = |z|? is concave (z is a scalar here), |z|P is a sub-additive
function. Since the sum of sub-additive functions is sub-additive, F(z) = ||z|?, 2 € R is

also sub-additive, thereby implying ||z||> — [|y||? < ||z — y||}. Consequently, Equation (3.13)

56



implies that

—_

P~ 2 - ﬁ\l”p_X(Ilﬁollwap—||ﬁ||wap)+!|7’—zo—£o||£,p
(3.14)

_H‘C’O_‘CHwap—{—pr ZO_LOH

p,p?

where the last inequality is derived from the linearity property in the definition of || - [|%,

on tensors. Based on this inequality, ||£ — Lol|[P, can be bounded as follows:
||L0 - LHg,p < ||P -Z- ‘CHg,p + ||P - Z - £0||£,p
<[P —Z L[, + P — 20— Lolly, + 112 = Z0ll},
1 ) (3.15)
XHﬁO - c”wap + QHP - ZO - ‘C0||£,p + ||Z - ZOHZ,p

Tk

3
AZf_<Z ) +201P — Zo - Lolll, + 1€ — Zollh,,
k=1

=1

| —

where the third inequality is derived from substituting the inequality (3.14)) into the current
inequality; 7, is the rank of the matrix beirc((L£o — £)7*), and a(k) O'ék), ..., o) are the
7y, singular values of the matrix beirc((L£o — £)7).

Since || Zo||p < 6 and | Z||p < 6, |20 — Z||r < 20. According to Lemmaand

setting w; = %,‘v’j =1,...,M, we have:

S p
~ Z — p
\\Z—Zowli,péM(” ZO”F) < 20

VM - MEY

By Lemma and setting w; = i,Vj =1,...,r, we have:

(0@ 4 (0P 44 (6P . (\/(Uik))z + (o2 (mﬂ’:))?)p’ 516

Tk Tk
thereby leading to
"k k 1-2 "k k g _b
> ooy <rE (o))" = B lbeire((£0 — £
i=1 i=1 (3.17)

D
2

1— P A
=1, *(IM)3]|Lo — L[
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Applying this inequality to the final line in (3.15]) results in:

R 1 1_p . (25 p
£~ Loll2, XZ ](k 2||£0—£||I}+2mT”+Mg)_l. (3.18)

k=1

w

< mTI”, according to the generalized power-mean

Since |[P — Zo — Lol[p,, = [|Soll5,

inequality in Lemma [3.1] (by setting s = p, ¢ = 1), we have:
Sallp 1L Sallt
(H OHp,p>P < H 0”1,1 <T (319)

m m -

Next, we show that || £y — £| |1} <||I£ = Ly P - Denoting £ = L, — £ and based on

1, we have:

the fact that || Lo — L]|r < ||Lo —

}:[Q%@QS E:Hﬁhmm|

11,12,13 11,12,13

- (( > |[L]i1,i2,i3|>p>; < (Z |[£’]i1,z’2,z’3|p>; = L]y,

11,22,%3

I£]F =
(3.20)

11,12,13

where the second inequality is derived from the fact that F(z) = 2P(0 < p < 1) is a sub-

additive function. Raising both sides to the power of p yields || Ly — L]|[% < ||£ — Ly

Combining this inequality with Equation (3.18]), we have:

1< v R (26)P
Lo — L% < XZ ](k 2||£0—£||§+2mTP+W. (3.21)
k=1
Rearranging the terms, we have
1o £lp <M e 2mI” + A5
— <
0 1-£ = 3 097 _p
)\Zk 1( ) ger 1‘% k=1m(”)12
(since r, < I® and 1 — 2 5 > 0), and therefore
) omTP + 22
1€0 = Llr < {| ——3C—, (3.22)
A

provided that A > 1.
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To give an intuitive understanding of Theorem [3.3] consider the two most simplest cases:
e Forp=1,6 =0, we have:

Err(£) = m,

where % << 1 1s the sparsity coefficient, and 7" is bounded. Usually, the entries in
visual data are typically bounded by a constant that is not too large, i.e., the biggest
value of the entry is 255 for images. Thus, the error bound is rather small, indicating

rather good recovery.

e Forp=1,T = 0, we have:

20

Err(L) = m

)

1

where — << 1for A = oo. As suggested above, A in (3.11)) should be set to a

%)

large enough value.

3.3.4 Optimization Based on Alternating Direction Method

This section introduces a general optimization algorithm for solving (3.9)), which can be

reduced to

3

1
: Ty Lo Q2
r[rllglozkg_lozkHE H*7g—|—5HSHg+2H‘P L—S|7. (3.23)

To simplify (3.23), a series of auxiliary tensors M (k = 1,2, 3) are introduced to replace

L+ and to remove the correlation of £”%. Then, (3.23) can be rewritten to:

3
1 )
Mr?,l}:l,sﬁup —L =S+ O‘; || Mg + BlIS|lg

st.L = My k=1,2,3. (3.24)
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To relax the above equality constraints, this paper applies the Augmented Lagrange
Multiplier (ALM) method to the above problem, and the following augmented Lagrangian

function is obtained:

3
1
Lp(My, £,8,Q4) = S|P = £=Slli+ 0D oxl| Millog + B]Sg

k=1

+ 50, (L, £ — M) + %HET’“ — M%), (3.25)

where yi; is a positive scalar, and Q) is Lagrange multiplier tensor. According to the
framework of the alternating direction method (ADM) [3]], the above optimization problem

can be iteratively solved as follows.
Step1 Given £ and QS), update M, k= 1,2,3 by

. 1 s
MUY — argmin %H(ﬁ(t))ﬂ“ — M+ — QP [[F + aaul| My g
My Hi

1
= Dg((L£M)T + — g 22k, (3.26)
2% i

Step2 Given M,(fﬂ), S® and QS), k=1,2,3, update L by
3
1 1
L0 = argmin S [P — £ - SO+ Y e - MU 4 — QP2 (3.27)
c 2 — 2 e
Calculate the partial derivative of the above formulation with respect to £, and set it to zero.

1
P L+ 804w~ (M) =0
By rearranging the term with £, we have

R B e (3.28)
1+ 22:1/% .

L) —

Step3 Given £V, update S by
1
S = angmin [P — £~ S|+ 91810 = TP £, ). (29)
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Step4 Given Q,(f), L) and M,(:H), k = 1,2, 3, update £ by

Q" = Q) (L) — M) vk (3.30)

3.4 Experiments

In this section, four sets of experiments are conducted to illustrate the effectiveness of our
proposed methods. The first set of experiments is performed on the color image data contam-
inated by zero-mean Gaussian noise, and the proposed methods including TRWTANN and
TRWTAR-/,, are compared with several state-of-the-art low-rank tensor recovery methods,
including SNN[25]], Liu’s work (called Liu for short in the following)[45]], SRALT-¢,, [89],
KBR [80] and TRPCA [50]. The second and third sets of experiments are performed on the
color image data and video, respectively. All of them are contaminated by the mixture of
zero-mean Gaussian noise and random valued impulse noise in different noise levels to test
the seven methods. To illustrate the robustness of the proposed methods to outliers in the
visual data and their effectiveness in practical applications, in the fourth set of experiments,
all seven methods are tested on background subtraction. The source code of SRALT—€
and KBRE| are provided by their authors, while the source code of the remaining methods
including SNN, Liu’s work, and TRPCA are provided by the LibADMM toolboxﬂ The
parameters of all methods are tuned to the best for each case. In addition, o (1 < k < 3) in

our methods are set to %

! https://github.com/18357710774/SRALT _code
2 https://github.com/XieQi2015/KBR-TC-and-RPCA
3 https://github.com/canyilu/LibADMM-toolbox
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(a) (b) () (d)

(e ® (€9) (h)

Figure 3.1: Denoised results on “Peppers”, 6 = 20. (a) Noised image (b) SNN. (¢) Liu. (d)

SRALT-/,. (e) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-/,,.

3.4.1 Zero-Mean Gaussian Noise: Color Image Denoising

The clean color image with a size of [; x I, X 3 can be approximated by low-rank tensor
Ly € RIXI2X3 and the zero-mean Gaussian noise can be regarded as small entry-wise
perturbations Z, € R71*%2X3 which is a tensor with the entries independently sampled from
a N(0, 6?) distribution (the noised image can be obtained by P = Ly + Zy). In this part,
all the seven methods (including SNN, Liu, SRALT-/,, KBR, TRPCA, TRWTANN, and
TRWTAR-/,,) are applied to color image recovery in which the color image is contaminated

by zero-mean Gaussian noise. All methods are performed on House, Lena, Peppers, F16,
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§=5 § =10

SNN Liu SRALT-£, KBR TRPCA TRWTANN TRWTAR-£;, SNN Liu SRALT-£;, KBR TRPCA TRWTANN TRWTAR-£,
House 29.77 29.58 36.06 35.16 31.43 31.88 3437 28.36 28.25 29.38 29.70 31.07 3152 31.04
Peppers 32.02 31.76 34.70 3221 31.91 32.77 34.55 28.29 28.29 28.66 29.49 30.81 31.06 30.97
Lena 32.71 32.57 35.51 33.80 32.69 33.53 3532 28.50 28.56 29.17 30.29 31.46 31.74 31.82
Baboon 31.73 31.16 34.12 27.65 29.72 30.67 33.15 28.04 27.92 28.22 26.36 28.64 29.10 28.66
F16 33.39 3325 36.40 3327 33.53 34.42 36.39 28.71 28.78 30.15 30.02 31.97 32.12 32.54
Kodak imagel 33.19 33.06 35.95 3331 33.99 35.01 37.24 28.37 28.57 28.76 30.07 31.62 31.71 32.35
Kodak image2 32.68 32.61 36.55 33.90 34.76 35.71 3743 28.29 28.53 2875 30.75 32.50 3242 33.00
Kodak image3 32.80 3271 36.85 3436 34.64 35.60 37.41 28.32 28.57 28.89 30.80 32.29 32.29 3292
Kodak image12 33.04 32.99 37.22 36.14 35.51 36.43 38.12 28.39 28.65 29.87 31.58 32.95 32.78 33.71
Average 32.37 32.19 3593 3331 33.13 34.00 36.00 28.36 28.46 29.10 29.90 31.48 31.64 31.89

5 =15 & =20

SNN Liu SRALT-£,, KBR TRPCA TRWTANN TRWTAR-£;, SNN Liu SRALT-£;, KBR TRPCA TRWTANN TRWTAR-£;,
House 22.98 2296 29.53 27.11 27.14 26.50 28.94 22.46 2249 28.40 24.78 26.95 26.56 26.59
Peppers 26.23 25.68 28.85 27.22 27.75 27.73 28.96 25.24 24.88 27.36 2543 26.90 27.17 2747
Lena 26.74 26.22 28.96 27.87 28.52 28.58 29.87 25.69 25.38 28.22 25.93 27.59 28.02 28.31
Baboon 23.30 22.34 25.72 2473 25.03 24.95 26.29 22.65 21.86 24.84 23.52 24.54 24.65 24.48
F16 27.14 26.34 28.52 27.59 28.94 28.87 30.31 26.00 25.54 28.42 25.58 27.88 28.17 28.58
Kodak imagel 26.47 26.13 28.35 27.66 28.58 28.71 29.61 25.02 25.13 26.53 25.79 27.22 27.54 28.05
Kodak image2 27.45 2779 30.77 28.63 30.25 30.39 30.60 2591 26.76 26.87 26.76 28.56 29.00 29.71
Kodak image3 27.16 27.40 30.36 28.41 29.75 29.94 30.41 25.61 26.32 27.35 26.44 28.14 28.61 29.27
Kodak image12 27.57 27.98 29.53 28.74 30.78 30.95 31.23 25.99 26.86 29.67 26.58 28.89 29.38 30.35
Average 26.12 25.87 28.96 27.55 28.53 28.51 29.58 24.95 25.02 27.52 25.65 27.41 27.68 28.09

5 =25 5 =30

SNN Liu SRALT-¢,, KBR TRPCA TRWTANN TRWTAR-£, SNN Liu SRALT-¢;, KBR TRPCA TRWTANN TRWTAR-£;,
House 21.34 21.36 25.24 23.13 24.22 23.95 24.01 20.94 20.86 2230 21.62 24.19 23.93 24.07
Peppers 24.06 23.74 24.20 23.98 25.04 25.40 25.51 23.39 23.14 21.37 22.82 24.63 25.04 25.36
Lena 24.66 2434 25.32 24.27 25.87 26.25 26.26 23.98 23.70 2222 22.90 25.46 25.96 26.26
Baboon 21.23 20.85 22.92 2234 2242 22.69 22.54 20.82 20.44 20.79 21.36 2227 22.56 22.54
F16 24.90 2445 27.44 24.01 26.13 26.34 26.38 24.14 23.84 24.67 2272 25.65 26.02 26.32
Kodak imagel 24.25 24.24 23.50 24.24 25.76 26.14 26.15 23.39 23.59 20.98 22.96 25.10 25.40 25.76
Kodak image2 25.65 26.15 23.20 25.23 27.87 28.20 28.23 24.68 25.41 20.63 23.92 2691 27.17 27.71
Kodak image3 25.15 25.50 23.62 24.80 27.13 27.57 2771 24.17 24.71 20.93 23.80 26.23 26.62 27.07
Kodak image12 2573 26.23 27.70 24.88 28.24 28.60 28.70 24.70 25.44 23.96 23.48 27.14 27.43 28.13
Average 24.11 24.09 24.79 24.10 25.85 26.13 26.17 23.36 23.46 21.98 22.84 25.29 25.57 25.91

Table 3.2: Color image denoising results (PSNR) by different methods for the case of

zero-mean Gaussian noise.
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(a) (b) (© (d

(e) ® (® (h)

Figure 3.2: Denoised results on “kodak imagel”, 6 = 30. (a) Noised image (b) SNN. (c)

Liu. (d) SRALT-(,. (¢) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-(,.

Baboon, and the 1 — 3 and 12" images from the Kadak PhotoCD ﬂ Meanwhile, the

standard deviations of zero-mean Gaussian noise § are set to § = {5, 10, 15, 20, 25, 30}.

Table shows the Peak Signal-To-Noise Ratio (PSNR) results of different methods
when the image data is corrupted by zero-mean Gaussian noise and the highest PSNR values
are marked in bold. The visual quality performance of all the methods is reported in Figs[3.1}
[3.2] From these results, the following observations are made. First, the PSNR results of the
proposed methods (TRWTANN and TRWTAR-/,) and the other five methods (SNN, Liu,
SRALT-/,,, KBR, and TRPCA) indicate that TRWTANN and TRWTAR-/,, achieve the best
denoising performance in most cases. Specially, for the case of 6 = 15, TRWTAR-/,, even
outperforms the five comparing methods by at least 1dB on average PSNR. This illustrates

the effectiveness of the methods based on the weighted tensor average rank for handling

4 https://webpages.tuni.fi/foi/GCF-BM3D/index.html
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Gaussian noise. Besides, the PSNR results of TRWTANN and TRWTAR-/,, indicate that
using the non-convex surrogate strategy given in this paper can improve the effectiveness of
the original method (TRWTANN) significantly. In addition, from Figs 3.2} it can be seen
that the three tensor recovery methods based on t-product (including TRPCA, TRWTANN,
and TRWTAR-/,,) retain more information and details about the image, while the denoised
images obtained by SNN and Liu appear some white stripes. For the remaining two methods
including SRALT-/,, and KBR, there are still some residual noise within the denoised image.

This validates the effectiveness of the methods based on the t-product.

3.4.2 Zero-Mean Gaussian-Impulse Mixed Noise: Color Image Denois-
ing

In this part, the proposed models are applied to image recovery, where the color image is
contaminated by the mixture of zero-mean Gaussian noise Z, and random valued impulse
noise. Because the clean color image can be approximated by low-rank tensors, and the
random valued impulse noise with density level ¢ can be regarded as sparse errors SUE],
the noise can be removed from the color images P = L, + 2, + S by all the seven
methods (including SNN, Liu, SRALT-/,, KBR, TRPCA, TRWTANN, and TRWTAR-/,).
All the methods are tested on the testing image set that contains House, Lena, Peppers,
F16, Baboon, and the 1 — 3" and 12t" images from the Kadak PhotoCD. Meanwhile, the
noise is set to zero-mean Gaussian noise with standard deviations ¢ and random-valued

impulse noise with density level c. Besides, in this experiment, (4, c¢) is set to (J,¢) =

{(0,5%), (5,5%), (5,10%), (15, 10%), (15, 15%), (30, 15%)}.

5 3cl 1, entries in S uniformly distributed in [0, 255], and the remain entries in Sy are zeros.
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(a) (b) (©) (d)

(e ® €9 (h)

Figure 3.3: Denoised results on “F16”, (9, ¢) = (15,10%). (a) Noised image (b) SNN. (c)

Liu. (d) SRALT-(,. (¢) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-(,.
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(a) (b) (© (d)

(e) ® (g ()

Figure 3.4: Denoised results on “Kodak imagel”, (§, ¢) = (15,10%). (a) Noised image (b)

SNN. (c) Liu. (d) SRALT-/,,. (e) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-/,,.

(a) (b) (© (d)

(e) ® €9 (h)

Figure 3.5: Denoised results on “bridge-close”, (d, ¢) = (10,20%). (a) Noised data (b) SNN.

(¢) Liu. (d) SRALT-(,. (¢) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-(,.
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(8, ¢) = (0, 5%) (6, ¢) = (5,5%)

SNN | Liu | SRALT-¢, | KBR | TRPCA | TRWTANN | TRWTAR-Z, | SNN | Liu | SRALT-¢, | KBR | TRPCA | TRWTANN | TRWTAR-Z,
Baboon 2972 | 2961 2681 2706 | 29.50 2043 2999 2832 | 2820 25.73 2656 | 2834 28.76 2934
Fi6 3584 | 3603 34.66 391 | 3571 3640 37.69 3181 | 3179 32.19 200 | 3222 3317 3401
House 3036 | 3115 32.78 3941 | 3153 3263 277 2973 | 30.19 30.99 3351 | 3065 3085 3071
Lena 34.66 3473 35.56 35.61 34.88 3548 36.31 31.37 31.27 3247 32.80 31.87 32.82 3331
Peppers 33.09 33.21 33.56 33.15 32.62 33.58 34.40 30.68 30.61 29.68 31.38 30.69 31.46 31.92
Kodak imagel | 3423 | 3507 30.15 3315 | 3868 37.11 38.61 3049 | 3082 27.67 3199 | 3215 33.20 3399
Kodak image2 | 3439 | 3567 27.56 3521 | 3721 37.80 39.49 3142 | 3154 26.00 35 | 312 33.62 3425
Kodak image3 | 3537 | 35.69 3035 3587 | 3599 3740 3896 3141 | 3155 27.71 3338 | 3191 3345 3406
Kodak image12 | 36.09 | 36.48 3512 3829 | 3848 38.98 4046 3163 | 3181 32.23 3478 | 3256 3432 3485
Average 3386 | 3448 3184 3463 | 349 3542 3652 3076 | 3086 2941 3218 | 3139 3241 3294

(6,¢) = (10, 10%) (6, ¢) = (15, 10%)

SNN Liu SRALT-ZP KBR TRPCA TRWTANN TRWTAR-EP SNN Liu SRALT-ZP KBR TRPCA TRWTANN TRWTAR-IP
Baboon 2323 | 23.16 2048 2446 | 2274 2395 2526 267 | 2257 23.04 2315 | 2221 2341 2355
Fl6 2697 | 2672 2243 2821 | 2650 27.67 28.89 2592 | 2573 24.96 2567 | 2565 26.84 26.85
House 23.24 24.03 23.40 26.87 24.58 24.97 26.06 22.77 23.51 24.56 24.30 23.92 24.55 24.13
Lena 27.14 27.09 24.24 28.60 27.11 28.00 29.04 26.08 25.96 26.32 26.16 26.05 27.14 27.22
Peppers 2648 | 2634 2425 2781 | 2580 26.88 2791 2549 | 2536 2629 2560 | 2494 26.06 26.11
Kodak imagel | 2666 | 26.50 2385 2788 | 2737 2787 2878 2525 | 2523 25.85 2561 | 2593 26.12 26.65
Kodak image2 | 2821 | 2824 2723 202 | 2837 2034 29.44 26.56 | 2674 26.02 2688 | 27.05 27.49 27.50
Kodak image3 | 28.03 | 28.10 2655 2023 | 2798 2905 2930 2631 | 2652 26.66 2681 | 2663 27.15 27.30
Kodak image12 28.33 28.38 25.71 29.60 28.89 29.94 29.92 26.61 26.80 27.61 26.93 27.40 27.79 27.85
Average 26.48 26.51 24.24 27.99 26.59 27.52 28.29 25.30 25.38 25.70 25.68 25.53 26.28 26.35

(6,¢) = (15,15%) (8, ¢) = (30, 15%)

SNN Liu SRALT—ET, KBR TRPCA TRWTANN TRWTAR—ZI, SNN Liu SRALT—ZP KBR TRPCA TRWTANN TRWTAR—ZT,
Baboon 20.64 20.81 21.67 2227 19.98 22.38 2241 19.67 19.78 20.01 19.71 19.04 20.12 20.06
Fl16 24.02 24.04 24.48 25.18 23.04 2541 25.85 2248 2253 22.88 21.21 21.82 22.83 22.87
House 2166 | 21.70 2005 2490 | 2164 2316 2296 2047 | 2036 18.03 2059 | 2028 20.58 2038
Lena 2469 | 2476 2521 2555 | 24.04 26.19 2638 284 | 2288 2.8 2000 | 2232 23.50 2348
Peppers 2389 | 2395 23.98 471 | 2273 25.04 2529 212 | 214 2,01 2001 | 2110 2236 2248
Kodak imagel | 2440 | 24.46 25.49 2502 | 2419 25.59 25.94 265 | 2267 23.06 2Ll | 2256 23.09 2314
Kodak image2 26.74 26.74 26.03 26.44 26.23 26.86 27.36 24.65 24.62 24.13 22.00 2473 24.68 24.84
Kodak image3 26.39 26.28 25.52 26.18 25.49 26.58 27.10 23.98 23.85 2292 22.07 23.69 24.15 24.30
Kodak image12 26.84 26.83 27.06 26.22 26.55 27.17 27.82 24.61 24.61 24.49 21.92 24.75 24.79 24.99
Average 2436 | 2440 2439 2516 | 2377 2538 25.68 261 | 2260 2226 2019 | 2225 22.90 2295

Table 3.3: Color image denoising results (PSNR) by different methods for the case of

zero-mean Gaussian-impulse mixed noise.
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(a) (b) (© (d)

(e) ®) (& (h)

Figure 3.6: Denoised results on “akiyo”, (4, ¢) = (10,20%). (a) Noised data (b) SNN. (c)

Liu. (d) SRALT-/,. (¢) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-/,,.

(8, ¢) Video sequence | SNN | Liu | SRALT-¢, | KBR | TRPCA | TRWTANN | TRWTAR-£,
templete 2324 | 2412 23.88 2409 | 2426 25.05 2518
grandma 2807 | 29.98 31.20 232 | 3207 32.55 3274
akiyo 27.02 | 2840 29.46 2994 | 3053 31.04 31.28
bus 2320 | 2281 20.94 2058 | 2345 24.52 2475
(5,10%)
mobile 21.07 | 2146 20.39 18.01 21.48 273 23.03
bridge-close 27.06 | 28.52 29.75 3109 | 3078 3117 31.31
bridge-far 30.87 | 31.89 33.49 3536 | 3482 35.06 35.77
Average 2579 | 2674 27.01 2734 | 28.19 28.87 29.15
templete 1971 | 2067 20.85 2066 | 21.09 21.44 21.52
grandma 2544 | 2671 28.21 2872 | 2842 28.77 29.27
akiyo 2420 | 24.82 26.18 2760 | 27.16 27.52 27.99
bus 1951 | 2044 19.73 1995 | 2141 21.85 21.73
(10, 20%)
mobile 17.88 | 1852 18.64 1739 | 2115 20.84 20.18
bridge-close 2488 | 2592 28.07 2943 | 2859 29.00 29.68
bridge-far 2819 | 28.84 31.97 3221 31.48 31.52 3259
Average 283 | 2370 24.80 2513 | 256l 25.84 26.13

Table 3.4: Results on video data with Gaussian noise and random-valued impulse noise.
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All the methods are evaluated by the PSNR value and visual results. From Table it
can be seen that the proposed methods (TRWTANN and TRWTAR-/,) outperform SNN,
Liu, SRALT-/,,, KBR, and TRPCA by a large margin in all cases on PSNR values. As shown
in Figs[3.313.4] the proposed methods retain more details in the denoised images. These
results indicate the superiority of the proposed methods. The performance superiority is
achieved by considering different tensor transpose operations in the progress of estimating
the latent low-rank tensor, which makes use of the information within the tensor data as
much as possible. This illustrates that the new tensor rank (WTAR) given in this paper (see

Definitions [3.413.5)) is more reasonable in real applications than others.

3.4.3 Zero-Mean Gaussian-Impulse Mixed Noise: Video Sequence De-

noising

Similar to the case of color image denoising, video sequence denoising can also be regarded
as a low-rank tensor recovery problem. In this case, each color frame of the video is folded
in the third dimension of the data tensor £, € R11*72%13>3 (corresponding to the color
video with the size of I; x I x I3 x 3) to obtain clean tensor data £, € R/1*22x13x3 Then,
TRWTANN and TRWTAR-/,, are compared with the other five methods including SNN,
Liu, SRALT-¢,, KBR, and TRPCA on the video sequences contaminated by mixed noise
to demonstrate the effectiveness of the proposed model. In this experiment, (d, ) is set
to (4,¢) = {(5,10%), (10,20%)}. Seven wildly used test videos are taken from the YUV
Video Sequences to form the testing video setﬂ including templete, grandma, akiyo, bus,

mobile, bridge-close, and bridge-far. The size of each frame is 144 x 176, and only the first

® http://trace.eas.asu.edu/yuv/
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Video Clip SNN Liu SRALT-£y, KBR TRPCA TRWTANN TRWTAR-£,,
Airport 0.2632 0.2787 0.3485 0.0859 0.1972 0.3770 0.3837
Hall 0.4258 0.5440 0.5408 0.5548 0.4412 0.5534 0.5492
Office 0.3158 0.5278 0.5081 0.5763 0.1874 0.5552 0.5736
Pedestrian 0.2957 0.4882 0.4661 0.4124 0.3177 0.4554 0.4546
Smoke 0.1138 0.6249 0.6063 0.5160 0.0233 0.5515 0.5881
Average 0.2829 0.4927 0.4940 0.4291 0.2334 0.4985 0.5098

Table 3.5: Background subtraction results of different methods.

30 frames of each video are chosen for testing.

All the methods are also evaluated by the PSNR value and visual results, and the
evaluation results are listed in Table [3.4] and Figs[3.543.6] From these results, the following
observations can be obtained: (1) The methods based on ¢-product (including TRPCA,
TRWTANN, and TRWTAR-/,,) obtains better results than other methods (including SNN,
Liu, SRALT-/,, and KBR) in the case of video denoising. As shown in Figs[3.5/{3.6] the
methods based on ¢-product retain more information about the video. This is because all
three methods based on ¢-product have a recovery guarantee. Also, they can find the low-
rank subspace of tensor data more exactly and utilize the information within the real data
more effectively than other low-rank tensor recovery methods under mixed noise. (2) The
proposed methods (including TRWTANN and TRWTAR-/,)) are more effective than other
comparing five methods. Specially, TRWTAR-/,, outperforms other comparing methods by
at least 0.5dB on average PSNR value. This indicates that the proposed methods guarantee a
more accurate low-rank recovery than other comparing methods, and they are more robust
against noise and outliers. (3) In most cases, the results obtained by TRWTAR-/,, are better
than those obtained by TRWTANN, indicating the effectiveness of the general algorithm

given in this paper.
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3.4.4 Background Subtraction

In this part, the proposed models are applied to the background subtraction task that aims
to separate the foreground objects from the background. The background of each frame of
the video is static and similar, and it can be regarded as a low-rank tensor £L,. Meanwhile,
the moving foreground objects can be regarded as sparse noise Sy, because they occupy
only a fraction of pixels in the video. Therefore, all the seven methods including SNN,
Liu, SRALT-/,, KBR, TRPCA, TRWTANN, and TRWTAR-/,, are tested on the five video
sequences E]to deal with the case of background subtraction.

To measure the background modeling output quantitatively, S(A, B) = igg

is used
to calculate the similarity between the estimated foreground regions and the ground truths.
The quantitative results of different methods are listed in Table and it can be seen that
the proposed model achieves the best results. Also, the following observations can be made.
First, TRPCA performs poorly in this experiment. This is because the exact recovery [50]
and the stable recovery of TRPCA require that the support €2 of the true latent sparse tensor
is uniformly distributed. However, this condition is not met in the background subtraction
application because the moving foreground objects are composed of several contiguous
regions. The proposed methods (TRWTANN and TRWTAR-/,) can fix this problem well.
This is because they consider different transpose operators to make use of the information
within the tensor data effectively, and they perform stably against the outliers. In addition,
it should be noted that Liu needs some additional effort to tune the weighted parameters
empirically. By contrast, in our methods, all of a;(1 < k < 3) are set to # so that the

proposed methods can be applied to real applications more easily.

7 http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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3.5 Summary

In this work, TVTR is discussed at first. It is discovered that if different transpose operators
are performed on the observation tensor, different results will be obtained by the tensor
recovery algorithm with TVTR property. To solve this issue, TRWTANN is taken to study
the resulting tensor by a series of transpose operators on the observation sensor, and the
information within the tensor data is utilized more effectively. Besides, to balance the
solvability and effectiveness of TRWTANN, the non-convex version (3.9) of TRWTANN,
i.e., TRWTAR-/,, is investigated. Then, the worst-case error bounds of the recovered tensor
are given, and a non-convex optimization algorithm based on generalized tensor singular
value thresholding (GSVT) is designed to solve the proposed model (3.11)) and its non-
convex version (3.9). The experimental results validate the effectiveness of the proposed

methods. The work presented in this chapter has been published [93]].

It is worth noting that the t-product-based tensor recovery still has the TV for other
invertible linear transforms because the t-product-based rank is only based on the invertible
linear transforms along with the third dimension of the tensor. But, we still can adopt the
same idea with the weighted tensor average rank for other cases, i.e., considering the low

t-product-based tensor rank from different dimensions of data tensors.
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Chapter 4

Handling Slice Permutations Variability

in DFT-Based Tensor Recovery

4.1 Introduction

Although tensor recovery based on t-product is effective and widely used, there are still
some limitations: as shown in Fig. [4.1] rearranging frontal slices sequence order of tensor
will have a significant influence on the effectiveness of tensor recovery, in which X s
obtained by arranging the low-rank approximation of Y (Y is obtained by rearranging Y
in randomly frontal slices sequence order) in original frontal slices sequence order. Note
that the gap of two mean PSNR (Peak Signal to Noise Ratio) results even achieve 3dB. We

called this phenomenon as Slice Permutations Variability (SPV) in tensor recovery.

This paper focuses on this new problem which has not been explored so far to the best

of our knowledge. Our contributions are three-fold:

74



(a) (b) (c) (d)

Figure 4.1: Color video (‘bus’) (modeled as a tensor ) € R144*176x90) can be approximated
by low tubal rank tensor. Here, only the first frame of visual results in (a)-(b) are presented.
(a) The first frame of the original video (b) approximation by tensor X'* ¢ R144x176x90
with tubal rank r = 30. (MPSNR=32.45dB) (c) approximation by tensor X & R144x176x90
with tubal rank » = 30. (MPSNR=29.27dB) (d) MSE results of X* and X" comparison for

different r.

* We study SPV and Slice Permutations Invariance (SPI) of tensor recovery theoretically
and experimentally for the first time. A tensor recovery algorithm has SPI, i.e.whatever
how to change the slice order of data tensor, the solution of the algorithm will not be
changed. We prove that the tensor recovery algorithm has SPI property under certain

conditions.

* When the conditions are not met, to make tensor recovery more stable for slice
permutations on data tensor, we propose a tensor recovery algorithm for SPV (TRSPV)
to solve a basic problem (Tensor Principal Component Analysis) in tensor recovery.
In the proposed algorithm, we find a better sequence of tensor slices by solving
a Minimum Hamiltonian Circle problem. Based on the new sequence obtained by
the proposed algorithm, we can extract the intrinsic low-dimensional structure of

high-dimensional tensor data more exactly.

75



* We conduct experiments to examine the SPV of TRPCA, the goal of which is to
recover a low-rank tensor from a high-dimensional data tensor with chaos slices
sequence despite both small entry-wise noise and gross sparse errors. An extension of
TRSPYV, Robust Principal Component Analysis for SPV (TRPCA-SPV), is proposed
to deal with this problem. The experimental results show a much better performance of
TRPCA-SPV compared with the existing state-of-the-art tensor recovery algorithms,

and a huge gap between the results of TRPCA-SPV and TRPCA.

4.2 Slice Permutations Variability in Tensor Recovery

4.2.1 SPI of the Sum of Nuclear Norms

For matrix recovery, as we all know, singular values of the matrix will not be affected by any
row or column transformations on the matrix, which means it does not make any influence
on the effectiveness of matrix recovery to rearrange the data sequence. And we call it to row
or column transformations invariance in matrix recovery (Property 4.2]and Theorem [4.T]).
Therefore, for tensor recovery based on the unfolding matrices of the tensor, SPV is satisfied
naturally (Property 4.3]and Theorem [4.2). Please refer to the supplementary material of this

paper for the detailed proof of these conclusions.

Definition 4.1. [95] P € RV*N is a permutation matrix if each row and each column of P

has unique non-zero entries 1.
Property 4.1. [95] If P € RN*N is a permutation matrix, then PT'P = PPT = 1.

Property 4.2. For A € RI'2 then nuclear norm satisfies row (or column) permutations
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invariance, i.e.|PA|, = || Al|. for any permutation matrix P € R (or | AP||. =

| Al|. for any permutation matrix P € R?2*12),

Proof. ||PA||. = ||Al|+ by Property 4.1|and the unitary invariant norm property.

Similarly, we can get || AP|. = || A||. for any permutation matrix P € R/2*/2, n

Theorem 4.1. For Y € R D(Y,7) = P 'D(PY, 1) for any permutation matrix
P c RiXN (and D(Y ,7) = D(Y P, 7)P~" for any permutation matrix P € R2*2),

where D(Y ,7) = argminy 1||Y — X||% + 7|| X ||, and P~" is inverse operator of P.

Proof.

P 'D(PY,r)=P! argzmin %HPY — Z|% + 7 Z]|.

= arngin %HPY — PX|7 + 7| PX]|.
:arg;nin%HY—XH%—i—THXH*, 4.1)
where the second equation holds by letting X = P~'Z, and the third equation holds by the

Property 4.1 and Property {4.2]

Similarly, we can get D(Y,7) = D(Y P,7)P~" for any permutation matrix P €

RIQXIQ- D

Definition 4.2. [4] Let A € R *2%Is C = {4y, iy, ..., 0,41 } is a circle on A which com-
posed of 1,2, 3,..., Is. And we regard {iy,ia, ..., 015,01 }, {l2, 03, ey ULy, 01, 02 ooy {015, 115 ooy U152,

ir,—1,11,} as the same circle.

Definition 4.3. Let Cy, = {i1, ia, ..., 45, , 11} is a circle on A € R"*12%13 which composed

of 1, 2, 3,..., Iy. And we call 6k = {i1, 49, ..., 11, } is an obtained ordered array from Cj.
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Define O(i) is the i-th number of the ordered array, A o ch)(k = 1,2, 3) are the results by
k
horizontal slice permutations, lateral slice permutations and frontal slice permutations on
, 2 . . 2
A according to Oy, respectively, i.e.[Ao 77((311)]1-7;,; = [Alg, ). A° Péz)]w = [Al. 6,0).
and [A o Pgi)];7;,i = [A]. 6,0 for i = 1,2,3,... I. (If there is no danger of ambiguity,
3 0y
these are abbreviated to A o PW) (k = 1,2, 3).) Besides, we use AO 10 represent A o 73((33)

for convenience.

Property 4.3. For A € R0 then 32 a[[(A o PW) . = S0, aill Aw|. for
any slice permutations P*) ie.(k =1,2,3), where A represents the mode-i unfolding
matrix of A, Ao PW¥(k = 1,2,3) stands for the result by performing horizontal slice

permutations, lateral slice permutations, and frontal slice permutations on A, respectively.

Proof. For any slice permutations P*)(k = 1,2, 3), exist permutation marries P; and Q),
makes unfold;(A o P®)) = P, A;Q, for i = 1,2,3. Therefore, 37, a;||unfold,(.A o

PO =30 allPiAnQ;ll. = i, ail| Ag .. O

Theorem 4.2. S, (Y) = S, (YoP®)o(PW)~1(k = 1,2,3), where S,(¥) = argminy 1| Y—

X34+, X )|l and (P®) ™! is an inverse operator of P™.

Proof.
S (¥ o PW)o (PH)!

3
1 .
:(al”gzmm§||3"op(k)—3|!%+7E @il Z )l o (PH)

=1

3
1
—argmin =||Y o P® — X o PW|2 4 1 E o ||[unfold; (& o PH)||,
x 2

i=1

3
1
:arg;mn§|])7—XH%%—TZO@HX@)H*, 4.2)

i=1
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where the second equation holds by letting X = Z o (P*))~!, and the third equation holds

by the property of P*) and Property [

4.2.2 SPI of Tensor Nuclear Norm

In this part, we study the SPI of the tensor nuclear norm. And we have the following
conclusions. Please refer to the supplementary material of this paper for the detailed proof

of these conclusions.

Property 4.4. (Horizontal SPI of tensor nuclear norm) Tensor nuclear norm satisfies HSPI

(Horizontal SPI), i.e.||Al|. = ||.A o PW||,, for any horizontal slice permutations PV,

Proof. By the definition of bcirc(.A), exist two permutation matrices P and @ such
that beirc(A o PW) = P - beirc(A) - Q. Therefore, || Ao PY|, = [AoPW|,, =
1—13||bcirc(Ao PW)||, = %HP -beire(A) - Q||«. By Property %HP -beirc(A) - Q|| =
7; [Ibcirc(A) [« = [|A]la,x = [lA]l.. Thus [LA o P, = |lA]..

]

Property 4.5. (Lateral SPI of tensor nuclear norm) tensor nuclear norm satisfies LSPI

(Lateral SPI), i.e.|Al|, = || Ao P®

., for any lateral slices permutations P%.

Proof. Similar to the proof of Property 4.4 O
Property 4.6. For same circle C' = {iy,iq, ..., 11,11} and C* = {iy, tgi1, ooy i5s ooy Th—1, Ik}
1 2

1A = (|47,

where O = {iy,ia,...,i1,} is obtained by C', and O? = {ip,ips1, .01y, s ip_1} I8

obtained by C?.
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Proof.

(Al AL, [Al .. AL
(A, Al [l AL,
beire(A°") =
AL, L AL o ML AL,
A, AL, (A, [Al.a
T 2 AL ie Al
T Al s (AL,
.
Al AL, Al AL,
LAl AL, Al AL
= beire(,A9%). 4.3)

Therefore A" ||, = [|.A°"||o.. = 2 [[beire(A°). = £|beirc(A%)]|, = Ao =

3

1.A%°)... 0

The symbols and definitions used in Property [4.6|are explained in Definitions @.2}4.3]
Theorem 4.3. For same circle C' = {iy, iy, ....01,,01} and C* = {ig, ig1, s ilyy oy b1 Tk}
3) B3 _ 3) 3"
D(YoPsl,T) 077(31 =D(YoPs,,T) 0736 4.4)

o’ 02’ 2

where D(A, ) = argminy 3|l A — X||% + 7] X||., O! = {iy, iy, ...,i1,} is obtained by

C!, and O% = {i}, i1 1, -+, 15, .-, ix_1} is obtained by C>.
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Proof.

(axg min 3 [Y 0 P = 2|3 + 7] 2]L) 0 P
:argmin—Hyopg’l)—X HF—"_THXopol”
_argmln—H)J X%+ 7|X 07)01”*7

where the first equation holds by letting X = Z o (77(()3))
By Property l|x oPg’l)H* = ||x opg’gﬂ*. Therefore,
argmin 5[V = 3+ 7| 0 PG,
_argmln—H)J X% +T||XOP02||
:zaul";g.);ﬂrflrlirl—H)?073(()2 Xo P ||F+T||XOP ||
=(arg min ||yoP — Z[3 +7121.) o PS)

where the third equation holds by letting Z = X o (Pg? ). The conclusion holds. O

Property 4.7. For A € RI\*2%Is if [, < 3 then tensor nuclear norm satisfies frontal slice

permutations invariance (FSPI), i.e.||A|. = || Ao 73 )|\, for any frontal slice permutations
®3)
Pg -
. [B]:,:,l [B]
Proof. For I3 = 2,let[B], ., = [A], ,and[B] , = [A] . Thus beirc(B) =
[B]:,:,Q [B]
A, [A]. Al [A].
Az A — A A = bcirce(\A). Therefore, | Al = || A+ =
[A]:,:,l [A]:,:,Q [A]:,:Q [A]:,:,l
1Blla = 1B

_ : : _ 3)
For I3 = 3, there is only one circle. Therefore, | Al = ||.A o Pg”|. by Property
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Thus, the conclusion holds.

[
Theorem 4.4. Fory € RV 2xIs if [, < 3 then
DY, 7) =DV o P® 7)o p® (4.5)
fork =1,23.
Proof.
D(YoPW, 1)o (PW)~! Z(al"gzminéﬂy o PW — Z|% +7(| Z]|.) o (P*) 7!
:arg;nin %Hy oP® — x o PW |2 1 7| X o PP,
—argmin o[ - X + 7). @6

where the second equation holds by letting X = Z o (P*))~!, and the third equation holds

by the property of P*) and Property and O

Although, for I3 > 3, we have taken an example that contradicts the SPI of tensor
recovery based on the tensor-tensor product (see Fig.[4.1). By Theorem#.4] it can be seen
that tensor nuclear norm-based tensor recovery satisfies slice permutations invariance for

I3 < 3.

4.3 The Proposed Method for SPV

In the following, we consider the case of I3 > 3.
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4.3.1 Tensor Principal Component Analysis for SPV

Consider the following key problem:

1S
min =Y — X7 + 7| X|].. (4.7)
X,0

Since || X[ = || X ||« [50], therefore (4.7) can be converted to

14,6
min =¥ — X[} + 7 X
x,0

— min — [beire(¥9) — beire(X)|% + - [[beire(X)]).. .8)
x,0 213 I3
From
V]..oay .6 V]..60)
ey | Do Phaao - Dl
Y. 60 Y]..601) Y]..60)
V]..60) WVl..6p V]..60,)
. V.se W.oa V.60 |

[y]:,:,6(13) [y]:,:,(_j(l) T [y]:,:,6(13—1)

it can be seen that bcirc(yo) will be approximated to a lower rank matrix and get a better

low-rank eastimation of Y when adjacent [Y]. . 5, and (] . 5, are more similar (mark

Y]..60,41) = V]..60) for convenience). Therefore, we convert (.7) to the following

problem:

1 q>‘¢<
arg min 5| Y5 — X[2 + 7)., 49)
X
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where O* is obtained by C*(Y). Therefore we solve (@.7)) via Algorithm approximately
by Theorem [2.1f| The symbols and definitions used in Algorithm 4.1| are explained in

Definitions

Definition 4.4. Let A € RIV 2% C = {4y, 4y, ..., iy, 11} is a circle on A which composed
of 1, 2, 3,..., I3. We call C(is,i;) = {is,iss1,-..,0t} as a walk from is to i; on C, and
CYis,i¢) = {it, 041, ..., 15} as inverse of walk C(is, iy). Assume C(iy,1;) = {i1, 12, ..., 79}
and C(iy, ipx) = {01, G141, -+, Lok } are two walks on circle C, mark C(iy,4;) |J C(iy, 1) =

{ila Z.Qa X3 ilv Z.l-‘rl) ey Z.l-‘rk}-

Definition 4.5. Let C = {iy,is,...,i1,,11} is a circle on A € RV 2% ywhich com-
posed of 1, 2, 3,..., Is., and W (\A) is a weight matrix in which w; ;(A) = || [A]z —
[A].. ;|| is weight of [Al. ; and |Al. ; for i # j, and w; ;(A) = oo for i = j. Mark
w(A,C) =8} Wi iy, (A) + Wiy iy (A), C(A) = argming w(A, C) and c*(A) =

mingc w(A, C).

A key point to DSPV (Y, 7) is to find C*()). And a simplest idea for getting C*() is
that, when we get C*~Y we can make appropriate modifications for the circle C*) to get
another circle C*) with a smaller w(Y, C(k)) as Fig. [4]. Repeat the above process until

C®) convergence to C*().

4.3.2 Tensor Robust Principal Component Analysis for SPV

Consider the following problem:

(£,8,0") = min |L], + \|S|l,  st(P-8)°=c, (4.10)
L£,8,0

! It is worth noting that we convert (#.7) to a minimum Hamiltonian circle problem.
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Figure 4.2: Obtaining C*() by solving a minimum Hamiltonian circle problem.

where L is low-rank, and S is sparse. And Algorithm 4.2 based on alternating direction
method (ADM) [3]] is proposed for solving (4.10). It is worth noting that, for fixed O, @10)
degenerate to TRPCA (which means (4.10) can exactly recover the low-rank and sparse

components from their sum for the fixed 0.).

4.4 Experiments

This section includes three parts: in the first two parts, we compare the proposed algorithm
(TRPCA-SPV) with several existing state-of-the-art tensor recovery methods (including
RPCAP[8], SNNF[251, Liu’s work B(called Liu for short)[9] and TRPCAS [50]) on image
sequence recovery task and image classification task to evaluate the effectiveness of the
algorithms to alleviate SPV problem on tensor recovery. And the third part is conducted in

order to evaluate the performance of TRPCA-SPV with different values of the parameter «.

2 https://github.com/dlaptev/RobustPCA
3 https://github.com/canyilu/LibADMM-toolbox
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4.4.1 Image Sequence Recovery

In this part, all five methods are tested on two hyperspectral image databases including Pavia

University [ and Botswana®.,

Each image with a dimension of /; X /5 is contaminated by the mixture of zero mean
Gaussian noise and random valued impulse noise, in which standard deviations of zero-mean

Gaussian ¢ is set as 6 = 5 : 10 : 25 and random-valued impulse noise with density level ¢

1
issetas ¢ = 0.05 : 0.1 : 0.25. For Pavia University, we empirically set \ = —————
max([l, 12)
for RPCA (which deals with each band separately), A = [%°, 22 20 for SNN, and
0.9
A = 330 x [0.2,0.1,0.7] for Liu. For Botswana, we empirically set \ = —————
max(1y, I5)
for RPCA (which deals with each band separately), A = [, 250 30] for SNN, and
A =370 x [0.3,0.1,0.6] for Liu.
. 0.9 0.8
For TRPCA, the parameter A is tuned to A = and A =
max([l,[2)13 max([l,lg)lg
for Pavia University and Botswana respectively, in which /5 is the number of spectral bands.
0.9
For TRPCA-SPYV, the parameter \ is tuned to A = for the two databases.

max(ll, ]2)]3

The Mean Peak Signal-To-Noise Ratio (MPSNR) value % Zfi . PSNR; is used to
evaluate the methods, where PSNR; is the Peak Signal-To-Noise Ratio (PSNR) result of
1-th restored band. From Table there are some observations as follows: TRPCA-SPV
outperforms the compared methods by a wide margin in most of cases. Specifically, for Pavia
University, TRPCA-SPV outperforms other methods by more than 3 dB on the case of small
noise levels. This demonstrates the superiority of our TRPCA-SPV in tensor recovery. For

the case of TRPCA-SPV v.s. TRPCA, TRPCA-SPV can attain much better results compared

http://www.ehu.eus/ccwintco/index.php/

Hyperspectral_Remote_Sensin_Scenes
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(a) (b) (© (d) (e)

Figure 4.3: Classification accuracies of the 5 algorithms on ORL database: (a) RPCA (b)

SNN (c) Liu (d) TRPCA (e) TRPCA-SPV

to TRPCA. The gap between MPSNR results by TRPCA-SPV and TRPCA even achieves
5dB in the case of 6 = 5 and ¢ = 0.05 : 0.1 : 0.25. This illustrates the huge affecting of

SPV on TRPCA, and TRPCA-SPV can eliminate it well.

4.4.2 Image Classification

In this part, image classification is conducted on two datasets including ORL databaseﬂ and

CMU PIE database?l

Each image with the size of I; x I5 is contaminated by the mixed noise, in which ¢ is set
asd =0:5:30and cissetasc = 0:0.05:0.3. For each noise level, all five algorithms are
used to recover the low-rank tensor structure from the noised images. The performance of
the algorithms is evaluated by classification accuracy via k nearest neighbor (kNN), where
k = 1 in the experiments. For each dataset, 90% of samples are randomly selected as the
training set, and the rest are taken as the testing set. The experiments are repeated 10 times,

and the average values of the accuracy of all methods are reported in Fig. #.3}4.4 For RPCA

5 https://cam-orl.co.uk/facedatabase.html
6 https://www.ri.cmu.edu/project/pie-database/
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(a) (b) (© (d) (e)

Figure 4.4: Classification accuracy result on CMU PIE database: (a) RPCA (b) SNN (c) Liu

(d) TRPCA (e) TRPCA-SPV

and TRPCA, the parameter A is set to A = 1/y/max([115, I3) and A = 1//max (11, I5)I3
respectively as suggested in [50], in which I3 is the number of samples. For TRPCA-SPV,
the parameter \ is set to A = 1/y/max(1y, I5)I3 as well. For Liu, we find that it does not
perform well when \;’s are set to the values suggested in theory [34]. We empirically set it
as 70 x [0.2,0.3, 0.5]. For SNN, we empirically set A = [2, 2 2] All results are presented

in Fig. 4.3H4.4] The cell with more dark red corresponds to higher classification accuracy.

From Fig. #.3}{4.4] there are some observations as follows: In general, TRPCA-SPV
achieves more stable and better performance compared to other methods (RPCA, SNN,
Liu, and TRPCA). In addition, TRPCA-SPV can attain better results compared to TRPCA,

because TRPCA-SPV exploits the low-rank structure within the tensor data more exactly.

4.4.3 Sensitivity Analysis of Parameters

In this part, an experiment is conducted with two datasets (including ORL database and
Pavia University), in which each image in datasets contaminated by the mixed noise with

= 15 and ¢ = 0.15, to investigate the influence of the parameter «.
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Figure 4.5: Sensitivity analysis of parameter x for TRPCA-SPV on (a) ORL database and
(b) Pavia University; Convergence analysis for TRPCA-SPV with different x on (c) ORL

database and (d) Pavia University.

The experiments for each parameter « are repeated 10 times, and the results obtained by
the different methods are shown in Fig. [4.5](a) and (b), from which we have the following
observations: (1) In general, the results by TRPCA-SPV are robust against to the parameter x.

(2) For all cases of TRPCA-SPYV, the results by TRPCA-SPV are much better than TRPCA.

In addition, from Fig. d4.5|(c) and (d), the curve by TRPCA-SPV is shocked depending
on the parameter « at the beginning and tends to stable with more iterations of the algorithm,
in which

-
*

Error = max(|[£*T) — £®)| o, |SFD) — 8B, || £*+D) 4 (S*+1)0" _ pO”

00)-
(4.11)

4.5 Summary

This chapter focuses on solving a new problem (SPV in tensor recovery) that has not been

explored so far. We aim to accurately recover a low-rank tensor from a high-dimensional
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tensor data with chaos tensor slices sequence. The example given in Figure 1 shows a huge
gap between results by tensor recovery using tensors with different slices sequence. To deal
with this issue, TRSPV is proposed. Furthermore, we discuss the SPV of several key tensor
recovery problems theoretically. To this end, we first study the row (or column) permutation
invariance of a key low-rank matrix recovery problem (Principal Component Analysis).
Then, the SPI of several key tensor recovery problems are discussed theoretically, and we
get the following results: (1) Tensor recovery based on the weighted sum of the nuclear
norm of the unfolding matrices has SPI. (2) For I3 < 3, DFT-based tensor recovery has
SPI. For the case of I3 > 3, experimental results show the effectiveness of the proposed

algorithm and eliminate SPV in DFT-based tensor recovery well.
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Algorithm 4.1: Tensor recovery for SPV (TRSPV)

Input: Y € RI>2x5 apd Tternum.

Output: C*(Y) and DSPV(Y, 1)

Compute weight matrix W;

Initialize circle C© = {i{" ", ....i%” "}, and k = 0;

while £ < Iternum do
=k+1;

if there are different igkil),igkfl),igkfl) + 1,2',%’“71) + 1 in C*=Y which make
Wtk—1) k1) (V) + wigk71)+17i1(5k71)+1<y) <

W,k=1) j(=1) () + wi£k_1)7i§k_1)+l(y) then
O = i iy

CEDT L A UL i)
_ (k—1 (k—1

JCtDEEY iy,

else

Cch = k-1,

break;

end

end

Obtain C*(Y’) = C*®), and compute DSV (Y, 7) = D(Y°", ), where O* obtained

by C*();
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Algorithm 4.2: TRPCA for SPV (TRPCA-SPV)

Initialize: £ = S© =00 =YD =0, p> 1, yp=1le—3,e=1le—8,x > 0.

while not converged do
1. Update ok by

If = 1ork mod x = 1, update O* by C*(M®), where

MP —p_sh _ 2V,

[T
112 .
F»

2.Update £+ by LD = argming || L], + %Hﬁ — (M(k))é

3. Update SV by

(k+1) _ . ok pk || g (k+1) 6  pO* 9" \O*|2.
S = argming A|S7 ||; + &£ + S P+ (20)7 IE
k+1)\O* k)\O* k41 k+1)\O* Oy,
4.(QI)O"=(QM)O" 4 p(LH) 4 (S1)0 — POy,
S'Update HE4+1 by Pk+1 = mln(plulﬁ ,umax);
6. Check the convergence conditions
k+1 k k+1)\O* k)\O*
LD — LW <6 (SO — (89| <,
k41 k+1)\O* ok }
ILETD 4 (8EF)OT — PO <6
end
Botswana Pavia University
é c RPCA SNN Liu TRPCA TRPCA-SPV RPCA SNN Liu TRPCA TRPCA-SPV
5% 29.90 34.52 36.82 32.06 38.44 27.56 29.82 32.03 30.65 36.60
5 15% 29.04 33.02 35.34 30.06 37.11 26.90 29.21 31.60 28.07 35.39
25% 27.73 30.81 32.92 28.78 34.98 25.55 27.96 30.53 26.03 33.48
5% 28.11 30.91 32.42 31.11 34.21 25.58 27.19 28.07 30.22 31.51
15 15% 27.32 29.47 30.92 28.99 32.34 24.77 26.43 28.35 27.17 30.38
25% 25.78 27.23 28.48 27.18 29.67 23.20 24.96 26.99 24.67 27.76
5% 26.84 29.17 30.37 29.34 31.65 23.63 25.12 26.94 28.50 29.02
25 15% 26.05 27.55 28.67 26.83 29.77 22.74 24.30 26.30 25.21 2749
25% 24.29 25.14 26.06 24.18 26.79 21.11 22.76 24.77 22.49 24.81

Table 4.1: MPSNR results by different methods on Botswana and Pavia University.
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Chapter 5

Handling Slice Permutations Variability

in t-Product-Based Tensor Recovery

5.1 Introduction

In the previous chapter, we discussed that Discrete Fourier Transform (DFT)-based tensor
recovery exhibits frontal Slice Permutations Variability (SPV), meaning that rearranging the
order of frontal slices in a tensor significantly affects the effectiveness of tensor recovery.
We believe that the root cause of SPV in tensor tubal rank-based recovery methods lies in
the definition of the t-product. To investigate the SPV in t-product-based tensor recovery
methods, including Tensor Principal Component Analysis (TPCA) and Tensor Factorization
(TF), for best k-tensor rank estimating, we conducted experiments using seven gray Videoﬂ

bridge-far, grandma, akiyo, bridge-close, templet, bus, and mobile. For each video, we

! http://trace.eas.asu.edu/yuv/
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used only the first 50 frames. These videos were chosen to test the influence of frontal
slice permutations on a series of t-product-based methods, including DFT-based methods,
Discrete Cosine Transform (DCT)-based methods, and Random Orthogonal Matrix (ROM)-
based methods. In Figure [5.1] we illustrate the relationship between SPV and the transforms
used, as well as the variation in frontal slices of the data tensor. More specifically, we
have the following two observations. (1) The impact of SPV on ROM-based methods, in
terms of mean Peak Signal-to-Noise Ratio (PSNR) results, is relatively mild compared to
DFT- and DCT-based methods. This suggests that the severity of SPV in t-product-based
methods depends on the specific transform employed. For the video sequence mobile, the
SPV-induced gap in PSNR reaches up to 1.9 dB. This is because both DFT and DCT
represent the frequency domain. Each frontal slice obtained through DFT or DCT applied
to the tensor tubes corresponds to coefficients at different frequencies. As a result, SPV
becomes more pronounced in DFT-based and DCT-based methods when dealing with video
sequences exhibiting higher std-mean values (the mean of standard deviations of each tube

in the data tensor).

In the previous chapter, we explored a method to find an optimal tensor frontal slice
permutation that results in a tensor with similar adjacent frontal slices, leading to a lower

average rank tensor. However, this method has certain limitations:

(1) Solving a Minimum Hamiltonian Cycle problem to find the optimal cycle is NP-
hard, making it challenging to obtain the optimal solution. Additionally, even slight
disturbances in the slice sequence order can lead to worse tensor recovery results, as

observed in Figure [5.2(b).

(2) The example presented in Figure [5.2(a) demonstrates that a tensor with a smaller
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Figure 5.1: The differences in mean PSNR (Peak Signal to Noise Ratio) results, i.e., dronm,
dprr, and dpcr, by performing random frontal slice permutation on the data tensor for
DFT-based methods, DCT-based methods, and ROM-based methods are presented as the
bars. The std-mean results presented as the black line are the mean of standard deviations of

each tube in the data tensor.
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Figure 5.2: Left Y Axis: the PSNR results of the best x = 50-rank approximation by
different SVD-based TPCA when the observation tensor suffers various permutations. Right
Y Axis: the weight of the cycle that corresponds to the Euclidean distance of adjacent frontal

slices.
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weight does not necessarily have a lower DCT-based rank. This finding emphasizes
that the method proposed in [100] is not suitable for DCT-based methods, as indicated

by the results obtained.

As a result, there is a need to develop an effective general solver that can effectively handle

SPV in t-product-based tensor recovery across various transform methods.

In this chapter, we introduce a generalized framework to address the issue of Slice
Permutations Variability (SPV) in t-product-based tensor recovery methods. The framework
revolves around finding a unitary matrix U that enables the tensor A x3 U to be approx-
imated by a tensor with a lower rank. By tackling SPV and presenting this generalized
solution, our work aims to enhance the robustness and effectiveness of t-product-based

tensor recovery methods across various transform methods.

5.2 Proposed Framework for Handling SPV in Tensor Re-

covery

5.2.1 Formulation of Proposed Framework

Let us consider the following constrained problems:
r/rYlig.F(S,X,y—S) st. G&, X, Y—-E)<0k=1,2---.n), (5.2)

where G,(€, X, Y — &) < 0 represents that each element of G,(€, X, Y — &) is less or
equal than 0, and Y€ RI*Pxb | x ¢ RIvxl2xIs apnd €€ RI*2*Is represent the observation

tensor, low rank estimation of Y, and noise in the observation tensor, respectively.
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Algorithm 5.1: BCD for solving the proposed t-SVD-based model (5.7).
Input: Y € RIx2x5 | o > (.

Output: X.
while not converged do
1. Compute XV by X = argming 1|UY ) — X312 + M| X ||o.r;
2. Compute U by U = argming L |[UY ) — X 3)l|2s.t. I =UU;
3. Check the convergence condition: || X 1) — X0 < ¢,

||U(t+1) - P(t)HOO <e
4.t=t+1.

end while

The most straightforward approach to finding a good frontal slice order for Y — £ is
by seeking a permutation matrix P such that ()} — £€) x3 P can be approximated by a
lower-rank tensor. To achieve this, we aim to minimize (€, X, (Y — &) x3 P) for £, X,
while satisfying G(€, X, (Y — &) x3 P) < 0(k = 1,2,--- ,n). Thus, we consider the

following problem:

)glg%f(s,x, (Y —E&) x3 P) st.GL(E, X, (Y —E)x3P)<0(k=1,2,---,n).
(5.3)

Here, P is a permutation matrix satisfying P P = PP” = I. To simplify the problem,

we do not strictly require that P is a permutation matrix, but it should still satisfy P7 P =

PP” = I. Therefore, we introduce a unitary matrix U, and consider the following problem
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Algorithm 5.2: BCD for solving the proposed Tensor Factorization model (5.10).
Input: Y € RIx2xb g e > (),

Output: A and B.

while not converged do

1. Compute A" by A = argmin g 1| Y x5 UY — A+ BY|2;
2. Compute BV by B = argming 3| x3 U — AU « B||2;

3. Compute U1 by
o1
U = argmin o |[UY ) — [AD =« BT |l st I=U"U; $.1)

4. Check the convergence condition: || A" — AW < &, |BUY — BY| < e,

U U, <&

5.t=t+ 1.
end while
instead:

min F(E,X, (Y —&) x3U)
XEU
st.G(E, X, (Y —E)x3U)<0(k=1,2,---,n), I=U"U. (5.4)
By solving (5.4), we obtain the low-rank estimation of Y, i.e., X x4 UT, where (2\? EU )
represents the optimal solution of (5.4).

Therefore, using the framework presented in (5.4)), we can address the SPV in Tensor

Robust Principal Component Analysis (TRPCA) as follows:
min €]+ 7 X st YxsU=X+Ex3U, I = Uu'u, (5.5)

where || X'||, 1 denotes a regularization term calculated as Zfi 1 % I[L(X)]....i||+, and L can
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be any invertible transforms, either real or complex.

5.2.2 'The Proposed Framework for Learning t-Product-Based Rank

and t-Product

Here, we use TPCA as an example to illustrate our framework for learning the t-product and

t-product-based rank. The TPCA model can be formulated as follows:
argm{\i)nHy—XH% st || X oL < K. (5.6)

In this formulation, || X||c 1, represents the tensor rank of X', which is defined as the non-zero
tubes of L(S) obtained by performing frontal slices-wise Singular Value Decomposition
(SVD) on L(X). This can be expressed as [L(X)]..; = [LU)]...[L(S)]...[LV)]L,
fori = 1,2,---,I3. Using the framework presented in (5.4), we obtain the following

SVD-based TPCA model:
(X,0) = argmin |V x3 U — X2 st || X|or <k I=UTU. (5.7)

To solve (3.7)), a Block Coordinate Descent (BCD)-based optimization algorithm (Algorithm
can be used, which involves performing SVD. Let Z be Z = X x3 U”, we can

reformulate the problem as follows:
(Z2,0) = arg min || — Z|Z st ||Z|orv <k I=UTU. (5.8)

A~ ~ T 2 . : .
Furthermore, we can observe that X x5 U = Z. Thus, solving (5.7)) is equivalent to
learning an appropriate transform LU and tensor norm || - | o for better exploiting the

low-rank property in the observation tensor.
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The definition of the t-product is closely related to the transform, leading to a sim-
ilar conclusion for the t-product. Let us consider the tensor factorization-based TPCA
(TFTPCA):

1
wmin 5|V — A B, (5.9)

where A € RI*#*Is and B € R**2%1s for given k. Using the proposed framework, we can

formulate the following model:

(A,B,U) = arg min,

1
i §y|yx3U—A*LBy|§ st. I=U"U, (5.10)

which can be solved by Algorithm [5.2] Consequently, we obtain an approximate tensor

factorization of Y given by

(A) x0T (B), 611

A~

and the (UT(.A), (}'T(B), U) is the optimal solution of (5.12) as well.

1
Juin §Hy —CxyD|2  st.I=U'U (5.12)

5.2.3 Optimization

In this part, we are going to solve the proposed TRPCA model (5.3) by using ADMM, where
1 is a positive scalar, and A is Lagrange multiplier tensor. According to the framework
of ADMM, the above optimization problem can be iteratively solved by minimizing the

Lagrangian function of (3.5)), i.e., the function (5.13)), as follows.

Lu(X,EU,A) = X].p + M€l + (UE@) + X5 —UYs), A)

+ LIUEq + X — UV 2. (5.13)
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Step 1 Update X+Y by

X —arg m}in L,(x, D PY AW
—argmin || X||. . + (UVEY) + X35 — UMDY, AD)
—HU + X - UYYgy%

. 1
= argmin || X||... + 5 ||U ” |+ X — UV + ;A(t)||% (5.14)
Step 2 Calculate £V by

EMY —arg mgin L (XD e u®, AW)

1
—argmm)\||5||1+—||U Em + XY - Uy +;A(t)|]§ (5.15)
Step 3 Calculate U by
U —argmin £,(XH) €8 U AYDY st IT=U"U
U H ) ) ) L.

1
—argmm—HUs G+ xY —UYe) + ;A@H% st. I=U"U (5.16)

. 1
Let (A1) + . AN (Y —EG)T = U2,V bethe SVD of (X, + EA“))()?@ -

E E;rl))T. The optimal solution of (5.16) can be given by UtV = U, VT [104].

Step 4 Calculate A" by

AGTD — A 4 M(t)(U(tH)ggrl) + Xg)rl) ~ UMY ). (5.17)

Step 5 Update p(“+Y by

(t+1) — (®)

p = min(pp', 1), (5.18)

where p > 1 and Ji is upper bound of (1),
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Algorithm 5.3: ADMM for solving the proposed TRPCA model (5.5).
Input: Y € Rivxxh o > 0,

Output: A and B.

while not converged do

1. Compute X*Y by (5.14);
2. Compute £V by (G.13);
3. Compute U™V by (5.16);
4. Calculate A“™V by (5.17);
5. Update p*+Y) by (5.18));

6. Check the convergence condition: | X)) — xW| < e, €D — €D < e,

||U(t+1) _ U(t)Hoo <e, ||X(t+1) + £(t+1) . y X 3 l]’(t+1)||Oo <e
T.t=1t+1.

end while

5.3 Experimental Results

In this section, we conducted two kinds of experiments to evaluate the effectiveness of the
proposed methods in tensor recovery applications, specifically video reconstruction and
image sequence recovery. To demonstrate the capability of our methods in mitigating the
performance degradation caused by slice permutation, we tested our methods on tensor data
that has undergone random slice permutation. For clarity, we denote the methods tested on
tensor data with the original frontal slice order by adding the ’-Original’ abbreviation. The
mean of the Peak Signal-To-Noise Ratio (MPSNR) is employed as the performance metric

for all methods in tensor recovery, and the best results are highlighted in bold.
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K =30
ROM DFT DCT
methods mobile bus tempete mobile bus tempete mobile bus tempete
t-SVD 21.19 25.55 25.24 21.23 25.70 2532 21.23 25.71 25.30
t-SVD-Original 21.20 25.56 25.24 2271 27.11 25.88 22.05 26.73 25.58
t-SVD-Ours 22.08 27.00 25.72 23.11 28.27 26.27 2222 27.57 25.76
TF 21.18 25.57 25.23 21.23 25.70 25.34 21.22 25.71 25.29
TF-Original 21.16 25.56 25.23 2271 27.11 25.88 22.05 26.73 25.58
TF-Ours 2213 27.07 25.73 23.09 28.17 26.26 22.22 2743 25.75
k= 50
ROM DFT DCT
methods mobile bus tempete mobile bus tempete mobile bus tempete
t-SVD 23.76 28.56 28.51 23.80 28.71 28.58 23.79 28.72 28.54
t-SVD-Original 23.76 28.57 28.52 25.74 30.22 29.43 24.81 29.74 29.00
t-SVD-Ours 24.92 30.07 29.15 26.24 31.30 29.82 25.08 30.58 29.21
TF 23.76 28.58 28.53 23.77 28.70 28.59 23.79 28.72 28.57
TF-Original 23.73 28.57 28.51 25.74 30.22 29.43 24.81 29.74 29.00
TE-Ours 24.94 30.12 29.15 26.27 3118 29.83 25.08 30.53 29.21

Table 5.1: MPSNR results by different methods

5.3.1 Video Reconstruction

In this section, we compared our proposed methods, including the SVD-based method
presented in Algorithm [5.1] and the TF-based method presented in Algorithm[5.2] with the
traditional SVD-based method given in (5.6) and TF-based method given in (5.9), for video
reconstruction. We evaluated all methods on three video sequences, including mobile, bus,

and tempete.

All results are presented in Table[5.1] which shows that our methods get the best perfor-
mance in TPCA for all cases. Particularly, the performance gap between our methods and
the other methods becomes more significant when the video sequence exhibits larger devia-
tions. This indicates that our methods effectively mitigate the slice permutation variability.

Moreover, our methods outperform the other methods even when the videos are in their
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methods u(o) P A
TRPCA-ROM le—8 | 1.6 14/+/max(I1, I2)I5
TRPCA-DFT le—3 | 1.9 1.3/v/max(I1, I2)13
TRPCA-DCT le—6 | 1.7 14/+/max(I1, I2)I5
TRPCA-ROM-our be—7 | 1.1 14/+/max(I1, I2)I5
TRPCA-DFT-our le—3 | 1.1 | X\ =1.4/\/max(I1, I2)I3
TRPCA-DCT-our le—4 | 1.2 X = 14/y/max(I1, I2)13

Table 5.2: Parameter setting for different methods.

methods c=0.05 c=0.1 c=0.15 c=0.2 c=0.25 c=0.3
TRPCA-ROM 31.80 31.28 30.14 28.03 23.71 19.14
TRPCA-ROM-our 4541 45.02 44.26 42.37 34.40 23.09
TRPCA-DFT 33.96 33.57 33.19 28.15 21.62 17.33
TRPCA-DFT-our 45.52 45.07 44.31 42.09 33.05 21.94
TRPCA-DCT 34.72 34.35 33.75 30.18 23.58 18.31
TRPCA-DCT-our 43.89 44.35 44.16 40.35 28.25 20.23

Table 5.3: MPSNR results by different methods for TRPCA on Pavia University

original frame order. For instance, in both mobile and bus sequences with the original frame

order, the MPSNR results obtained by our methods surpass the other methods by more than

0.5 dB for DFT and more than 1 dB for ROM.

methods c=0.05 c=0.1 c=0.15 c=0.2 c=0.25 c=0.3
TRPCA-ROM 31.78 31.06 30.46 29.42 28.71 27.47
TRPCA-ROM-our 47.41 46.95 45.99 44.91 42.79 39.96
TRPCA-DFT 37.66 36.57 3541 33.98 27.29 20.66
TRPCA-DFT-our 49.51 48.43 46.64 44.06 39.57 29.19
TRPCA-DCT 36.37 3575 34.45 33.64 324 30.89
TRPCA-DCT-our 47.22 46.57 45.63 44.41 39.97 35.98

Table 5.4: MPSNR results by different methods for TRPCA on Botswana
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methods c=0.05 c=0.1 c=0.15 c=0.2 c=0.25 c=20.3
TRPCA-ROM 32.49 32.10 31.67 30.88 29.96 28.51
TRPCA-ROM-our 34.79 34.50 34.19 3391 33.65 33.20
TRPCA-DFT 35.19 34.45 31.81 24.44 19.68 17.40
TRPCA-DFT-our 37.09 36.84 36.50 33.32 23.59 18.45
TRPCA-DCT 33.05 32.52 31.94 31.23 30.10 27.27
TRPCA-DCT-our 35.45 34.66 34.74 34.23 34.15 32.71

Table 5.5: MPSNR results by different methods for TRPCA on Indian_pines
5.3.2 Image Sequence Recovery

In this part, we compared the performance of the proposed methods, including TRPCA-
ROM-our, TRPCA-DFT-our, and TRPCA-DCT-our (our TRPCA method presented in
Algorithm [5.3| by using ROM, DFT, and DCT, respectively) with TRPCA-ROM, TRPCA-
DFT, and TRPCA-DCTE] (TRPCA method given in [S0] using ROM, DFT, and DCT,
respectively) in image sequence recovery. We evaluated all methods on three hyperspectral
image databases, including Pavia Universit)ﬂ, Botswand®, and Indian _pinesB]. Each data
has dimensions of /; X I X I3 and is contaminated by random-valued impulse noise with
density level ¢ = 0.05 : 0.1 : 0.25, where I3 represents the number of spectral bands. The

parameters for all methods are empirically set and presented in Table[5.2]

The MRSNR results are presented in Table [5.3}{5.5] where our proposed method con-
sistently outperforms other methods significantly across all cases. Particularly, our method
achieves more than a 10 dB improvement over other methods for most cases on the Pavia
University and Botswana datasets. These results demonstrated the advantage of our methods
over traditional TRPCA methods for image sequence recovery when the order of the image

sequence is perturbed.

2 https://github.com/canyilu/LibADMM-toolbox
3 http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensin_Scenes

105



5.4 Summary

This paper aims to investigate the issue of slice permutation variability (SPV) in t-product-
based tensor recovery methods and focuses on accurately recovering low-rank tensors from
high-dimensional tensor data with perturbations in the order of tensor slice sequences.
To address this problem, we propose a generalized framework that tackles SPV in t-
product-based tensor recovery methods. We apply this framework to TPCA (both SVD-based
and TF-based approaches) and TRPCA and employ BCD and ADMM algorithms to solve
the resulting models, respectively. The experimental results demonstrate the effectiveness of

the proposed methods in mitigating SPV in t-product-based tensor recovery.
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Chapter 6

A Novel Tensor Factorization-Based

Method for Tensor Recovery

6.1 Introduction

Although the t-product-based tensor completion methods have achieved great success,
there are still two challenges: (1) The TCTF [102] is based on a basic hypothesis that the
tensor with tensor tubal rank x can be approximately decomposed to the t-product of two
skinny tensors A € R1*%*Is and B € R**©2*5 (k could be obtained by estimating the
tensor tubal rank), so it overly relies on the rank estimation strategy. On the other hand,
due to the lack of a rank-increasing scheme, the rank estimation strategy given in [[102]
often underestimates the true rank, causing performance degradation in TCTF. (2) Currently,
iterative re-weighted tensor nuclear norm algorithms [74,68] and generalized tensor singular

value thresholding [93]] were proposed to solve the non-convex approximation of tensor
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recovery. These algorithms require computing the t-SVD of the original large tensor in each
iteration, causing a high computational cost. Therefore, it is necessary to develop an efficient

and effective tensor recovery framework for a wide range of surrogate functions.

To address the issues mentioned above, this paper proposes a novel tensor completion
framework with a new tensor norm that utilizes a dual low-rank constraint (TCDLR), and
its goal is to avoid the high computational cost in the standard t-SVD-based method and
achieve superior recovery results. More specifically, the features of the proposed method are

as follows:

* First, a new tensor norm with a dual low-rank constraint is given to utilize the
low-rank prior and the true tubal-rank information at the same time. Based on the
proposed tensor norm, a series of surrogate functions (possibly non-convex) of the
tensor tubal rank in the resulting tensor completion model (TCDLR) are allowed to
achieve better performance in harnessing low-rankness within the tensor data and
solving the over-penalization problem in the TNN-based tensor completion. Besides,
Property Theorem and synthetic experiments confirm that TCDLR can be
less negatively affected by the misestimation of tensor rank compared with standard

tensor factorization-based methods.

* Second, an optimization algorithm is developed to solve TCDLR efficiently, in which
the t-SVD of a smaller tensor instead of the big one is computed by using a simple trick.
As aresult, the total cost at each iteration of the developing algorithm is reduced to
O(11I213log I3+ k11 I513) from 0(1(1)1(22)13 + 111513 1og I3) achieved with standard t-
SVD-based methods, where /(1) = max(/q, I5) and /(o) = min(/y, I5). Here, k < (9

is the estimation of tensor rank. The convergence of the optimization algorithm was
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analyzed experimentally.

¢ Third, since the tensor rank of real tensor data is unknown, a novel rank estimation
method is proposed, which adopts an increasing and decreasing strategy to estimate the
tensor rank more precisely. By combining TCDLR with the proposed rank estimation
method, an efficient tensor completion framework (TCDLR-RE) is established to
accurately and effectively recover the principal components (the low-rank tensor).

The experiments demonstrate the high efficiency and effectiveness of TCDLR-RE.

6.2 Proposed Tensor Completion Framework

6.2.1 Formulation of TCDLR

Although TCTF can well address the issue of high computational complexity caused by
t-SVD for large tensors at each iteration, its over-reliance on the rank estimation strategy
often leads to degraded recovery accuracy. According to Property (i1), the low-rank
estimation of TCTF and TC-RE will deviate significantly from the true value when the rank
estimation deviates from the true rank. Even worse, the true rank is difficult to be estimated
accurately, especially under a low sampling rate. Therefore, in addition to achieving a better

rank estimation, a new effective tensor completion model needs to be developed.

Property 6.1. For Y, X € RIv<2xIs thep

(i) 1Y = X|[F = 7, 3i(0:(Y) — ou(X))%

(”) ”y - XH%‘ Z % z]il Zrank(y)<j§rank(X) 0j (Xl)z ifrank(y) < rank(X).
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The fundamental idea of our approach is to calculate the t-SVD of the obtained smaller
tensor instead of the original tensor by utilizing tensor tubal rank information that could be
provided by rank estimation methods, thus reducing the computational complexity of the

original t-SVD-based methods. Therefore, a new tensor norm is introduced,

00, if rank(X) > &;
X1, n0) = 6.1)

X, g, if rank(X) <k,

and the following generalized framework (TCDLR) is established:
m)in ”XH*,(R,Q) s.t. PQ(X) == PQ(M), (62)

where G can be any of the surrogate functions listed in Table By minimizing || X'||, (.g),
both the low-rank prior and tensor tubal rank information rank(X') < x are considered.
Theorem shows the robustness of TCDLR to inaccurate rank estimations for x. Noting
that since || - ||, ¢ is a better approximation of the tensor tubal rank than the tensor nuclear

norm, the optimal solution to (6.4) is expected to be low rank. When rank(X) < k <

o

rank (), the estimation « provides a better prior for the true tensor tubal rank, which helps
to recover the low-rank tensor more accurately. Later, the effectiveness of TCDLR in tensor

recovery will be demonstrated by experiments further.
min rank(X) 5.t. Po(M) = Pq(X), (6.3)
m)gn | X« s.t. Po(X) = Po(M). (6.4)

Theorem 6.1. Let X, X and X be the optimal solutions to (64), 6-2), and (63), respec-

tively. Then, we have:

° ~

(i) rank(X) > rank(X’) holds;
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(ii) If k > rank(Aot'), X is an optimal solution of and X is an optimal solution of
©.2);
(iii) If & = rank(X), X is an optimal solution of (63);

(iv) K < rank(X) holds if and only if || | (,0) = 00

As it will be shown later, benefiting from the proposed dual low-rank constraint, TCDLR
can avoid performing the t-SVD operation for the original bigger tensor that causes high

time consumption.

6.2.2 The Developing Optimization Algorithm for Solving TCDLR
6.2.2.1 A Trick to Efficiently Solve TCDLR

Since there exist A € R ***%s and B € R**2*%s guch that X = A * B and || X ||, (.0) =

| A * B|. g when rank(X) < k, the following problem is considered:
IﬁilIgl | A Bl.g s.t. Po(M) = Pqo(Ax B), (6.5)

where A € R"*%*s and B € R**"2%%s_If (A, B) is an optimal solution to (6.3)), we have
[ A% B|lsng) = [[A*Bllg < || X ||+ (x0) Where X is the optimal solution to (6.2). Thus,

it can be concluded that A « B is an optimal solution to (6.2).

Theorem 6.2. Let Y = A« B, where A € RV %0 gnd B € R<ExIs BT = QT « RT

is the QR decomposition of B and Z = Ax R,

Y=2Z2xQ
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and
Dg(Y,7) =Dg(Z,7) % Q

hold, where Z € Rl #xIs Q9 ¢ R 12X gpgd

1
Dg(Y,7) = argmin 5[|Y — X[ + 7 X[l..o-

According to Theorem|[6.2] the t-SVD of the large tensor can be avoided by constructing
Dg(A « B, 7). To achieve this goal, this paper introduces an auxiliary tensor X such that
X = A« B. Meanwhile, (6.3) is convert to

in || X|]. t.P =P , X = ,
Juin [[X]l.g st Po(M) =Po(AxB) AxB

which is equivalent to (6.6) when p = +o0.

- 1
$%||X||*,g+§|]A*B—X||% s.t. Po(M) = Pq(Ax B)

When (6.6)) is solved by iterative algorithms such as the Alternating Direction Method

of Multiplier (ADMM) [46], the t-SVD operation is only involved in solving
1
Dg(AxB,7) =argminT|X|.g + §||A>|< B X|3. (6.6)
x

According to Theorem a fast solver for (6.6) is presented in Algorithm

6.2.2.2 The Developing Optimization Algorithm based on ADMM

By utilizing the above trick, TCDLR can be solved as follows. To simplify (6.6), an auxiliary

tensor £ is introduced. Then, (6.6 can be rewritten to:

. H . 2 -
g@r’r"l‘{%vszA*B X7+ X]g  st.PoM)=AxB+E,  (6.7)
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Algorithm 6.1: Fast Solver to (6.6)
Input: A € RIxrxls B c RIexDs \ > (),

Output: S, g(A * B), Z,Q and R.

1. Compute R and Q by QR decomposition [41]] of (B"+)T: BT = QT « RT;

2. Compute Z = A* R,

3. Obtain S g(Z) by Generalized Tensor Singular Value Thresholding
(GTSVT)[93]]

4. Compute S\ g(A x«B) =S\ g(Z) * Q.

where [ = {€|Po(€) = 0}.

The lagrangian function of is formulated as

Lu(X,E,ABY) = X].g+ 5|1X — A B} + (Po(M) — A+ B—£,Y)

+ 5lIPa(M) — AxB—£]}. (6:8)

where Y is Lagrange multiplier, and p is a positive scalar. Therefore, is iteratively
solved by ADMM as follows.

Step 1 Calculate AV by

AU = argmin £,(XY €0 A4 BY W)
A

' 1
= arg min |XD — AxBY|F + |[Po(M) — Ax QW — €W 4 Wy(t)”%

—argmin ||C) — A« BY|2 = ¢ « (BT « (BY « (BT (6.9)
A

(t)
where C™Y = (Po(M) — €D + X1 ¢ %)/2,
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Algorithm 6.2: Solve (6.2)) by the Developing Optimization Algorithm
Input: The observed tensor Po(M) € RI*2X13 the support set €2, p = 1.3,

=10 =1077 k.
Output: X+
Initialize: (0, B, €0 x© y© and¢ =0
While not converge do
1. Compute A by (6.16);
2. Compute BY by (6.10);
3. Calculate QY Zt+Y and XY by Algorithm 6.1
4. Calculate PV py PUHD = Z(tHD  9(t+D),
5. Calculate £V by (6.12);
6. Calculate Y**V by (6.13);
7. Calculate Y by (6.14);
8. Check the convergence condition: |[Po(M) — P — £V <&,
[P — PO < e 44D €0 <
9.t =t+1.

end while

Step 2 Calculate BV by

B —argmin £,(XY, €D A B YW)
B
:argminHC(Hrl) . A(tJrl) *BH% _ ((A(t+1))T *A(tJrl))T % (A(tJrl))T *C(tJrl)
B

(6.10)
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Step 3 Calculate X“*Y by

1 1 1
(t+1) _ LAY (D) 2 _ (t+1) , RR+1) _*
A~ arg min LA B - R+ ] = Do(AC B, ),
(6.11)
and obtain Z*Y and Q“*Y by Algorithm 6.1
Step 4 Calculate £V by
p® y(t)
£ — argmin THPQ(M) — P —5 Ell7, st. € el (6.12)
£ 7
where P(t-i—l) _ Z(t+1) " Q(t-i-l).
Step 5 Calculate Y by
YD — O (Po(M) — P — gty L p®) (6.13)
Step 6 Calculate (1) by
p D = min(i, pp®), (6.14)

where i is the upper bound of 1Y), and p > 1.

According to AY « BY = 20 5« 9 range(Z®) and range(Q") are the column
space and row space of A x BY | respectively. Then, with (BT = (QU+INT 4

(RUMT we have

mEi'n ||C(t+1) . C(t—H) % (Q(t))T % BH?J

<min ¢t — ¢« (BT 5 (BY « (BT « B|)2. (6.15)
Therefore, A" is updated by
argmin |[CY — A% QW||2 = ¢t (QW)T (6.16)
A

for easy computation. The whole procedure of the algorithm is presented in Algorithm|[6.2]
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Table 6.1: Computational complexity of Algorithm

Step no. Operation Complexity
I xkxIg Iy xIaxIs IixkxIs kxIaxIs
1 AT = arg min | ¢t — "4 &« BY % O(L1zI3log Iy + k11 I 13)
A
kxIaxI3 I xIaxIs I xKkxI3 KxIax I3
(t+1) _ oromi (t+1) t+1) , "3 |2
2 B =argminp|| C - A « B % O(I1 I13log I3 + k11 I113)
IQXKX[;B KXKkXxI3 IoxKkxI3
—_—— — —— .
3 [(Q(i+l)>T: (R“H))T] = QR((B(i+1)>T) O(Iykl3log Is + ]2/\72]3)
I xkxI3 IixkxIz  kxkxI3
— = =
3 ZUH) = Al R O((I) + r)rI3log Is + I K215)
I xKkx1I3
t+1) 2
3 s%_g(z< ) O(LikIzlog Iy + I1K213)
I xIaxI3 N xkxI3 KkxXIaxI3
4 P = AU 4 BUHD O(LiIxI3log I + kI 1)
total total cost at each iteration O(L1zI3log Iy + k11 I 13)

6.2.3 Complexity Analysis

According to Algorithm[6.2] since TCDLR only requires computing the t-SVD of Z with
a smaller size, it avoids performing the t-SVD operation with a high time complexity
of O(klI 1513). The step-by-step computational complexity of the proposed algorithm is

summarized in Table[6.1] The total cost at each iteration (requires computing of FFT [50])

is O(I115131og I3 + k11 I,13), as shown in Table[6.1]

6.2.4 Rank Estimation

In the following, a method is proposed to estimate x in (6.5)) for a lower bound £, and an

upper bound K.y Of K.
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6.2.4.1 Increase Strategy

According to Theorem @v), k < rank(fc: ) holds and « should be increased when

| ||«,(x,g) = o0. In the following, the case of | ||+,(x,g) = 00 is considered.

Since || X||. (x.g) = 00, & < rank(X) holds for VX € {X|Pg(M) = Po(X)}, (6:3)
has no solution. A preliminary idea for the critical condition of increasing k is ||C ® — AW
@]z - 0 when t — oo. However, it is difficult to determine whether ||C) — A® « BY| 5
converges to 0 and the large value of ||CY — A®Y « BY||» should be allowed in the early
iteration of the algorithm. According to [97], A B is the rank-« estimation of C*) if (.,2(, E)
is the the optimal solution to min 4 5 [|C) — A * B|| p. Therefore, we increases  only if
some important components of C® are lost in A® x BY.

Defining D = C® — A® « B® ¢ RIx12xTsaccording to [73]], if D; is Gaussian dis-

Diiﬁi(Di) ) <
0;(D;) -

VT + /I + h(h > 1) holds with a high probability, where ji;(D;) is the mean value of all

tributed for given ¢ (in this case, D, contains less meaningful information), o (

elements in D; and 5Z(Dz) = \/111271 2 ([Di]w, — j1i)?. Here, this paper uses

o D) = || - Dt DiidDy

5;(D;)

2 to estimate o7 ( ), where p* isa 1 x I; vector whose

entries are independent standard normal random variables, 8; = \/ 4 > i (85— )%,

i = % Z;”Zl s; and s € RY is a vector sampled from D,.

Thus, when 5« (

Dlé—m) > VI + I + h(h>1), /{Z@ is increased to

£ = min(k" 4 1, Kmax) (1> 0). (6.17)

)

By performing the QR decomposition of [Q(Hl) P - D,]", we have

~T ~T

[Q(Hl)S P Dz’]T =Q, R, ,
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where P is an [ x [; matrix whose entries are independent standard normal random variables.

Thus, we augment

QY @, ek (6.18)
and
Z" 128 R, e ¢l (6.19)

6.2.4.2 Decrease Strategy

Note that in the computing process S1 g(Z(t“)), the singular values of ZEtH) will be
H7

obtained first. Therefore, it is assumed that A1 ; > Ay ; > --- > )\m(t+1) , are singular values

1,... H(H_l)

of Z f-tH). Then, the quotient sequence 5‘3@ =N\i/ A1 = — 1) is computed.

% D)X, o .
Suppose S; = arg mMax; <, /\j,i and T; = %, if T > 10 indicates a large dI'Op m
J#s; s

the magnitude of singular values [102], /sgtﬂ) should be updated as follows [8]]:

H§t+1) = max(/%i, Kvmin)a (620)

where &; satisfies Zji:l Njif D051 A > 95%.

bet thﬂ) =Qz Rzand Rz =U - S V" be the QR decomposition of Z\""" and

the SVD of R, respectively. This paper updates

ZEH_I) « QZ ' [U]:,lzn(i+l) ’ [S}lzn(.t+1),1:n(.t+1)’ (621)

and

QEH_]‘) = [V]:j,ﬂl:n(,u'l) ’ Q§t+l)' (622)

Different from [102], in the proposed rank estimation strategy, KT Z EtH), and QEHI)

7 B

are adjusted for each slice by considering the difference of each slice in the tensor. Based on
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Figure 6.1: The relative error with iterations for (a) N = 1000 and (b) N = 3000, and (c)
the plot of the singular values (i.e., [S];; 1) of the recovered low-rank tensor by different

methods for N = 1000, under the tubal rank # = 0.1 x N and a sampling rate of 30%.

005 01 015 02 025 03 005 01 015 02 025 03 005 01 015 02 025 03

(a) TNN [51]  (b) TC-RE [65] (c) TCDLR-RE

Figure 6.2: Comparison of the recovery capacity in 1000 x 1000 x 3 tensor with varying tubal
ranks and sampling rates. The white regions denote successful recovery with relerr <

1072; the black regions denote failed recovery with relerr > 1072

Algorithm [6.2] and the proposed rank estimation method, Algorithm [6.3] (TCDLR-RE) is

given.
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Figure 6.3: Comparison of the PSNR values on the randomly selected 50 images of the

Berkeley Segmentation Dataset.

(a) Original (b) (©) (d) t-(e) ) (2) TC-(h) TCDLR-
LRMCJ[I0] SNN[43] TNN[31] TCTF[102] PSTNN][39] RE[63] RE

Figure 6.4: Completion of the visual results on the Berkeley Segmentation Dataset with a
sampling rate of 30%: (a) The original image and the results by different methods including
(b) LRMC, (c) SNN, (d) t-TNN, (e) TCTF, (f) PSTNN, (g) TC-RE, and (h) TCDLR-RE,

respectively.
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6.3 Experiments

To verify the effectiveness and efficiency of TCDLR-RE for tensor completion, it was com-
pared with six state-of-the-art methods, including Low-Rank Matrix Completion (LRMCHIO],
SNN[45], - TNNT[5T], TCTH102], PSTNNF| [39], and TC-RE [65] on both synthetic and
real-world data. For TCDLR-RE, ¢, was selected as the non-convex penalty function in
| X ||+,(s,9)» and the parameters were set as Amax = 0.5 X min(/y, I5), Amin = 25, and
p = 0.8. For TCTF, the parameters suggested in [[102] did not lead to good performance on
a large dataset, so they were empirically tuned, as will be discussed later. The parameter
settings of SNN, PSTNN, and TC-RE are consistent with the suggestions by the authors, and
LRMC and t-TNN are free parameters. For fairness, these methods were run respectively 10
times in these experiments, and the average results were reported for each method. All the
experiments were conducted on a personal computer running Windows 10 operating system

and MATLAB (R2020b) (Intel Core 17-8700 3.20-GHz CPU and 16 GB memory).

6.3.1 Synthetic Experiments

All tensor product-based methods including t-TNN, TCTF, PSTNN, TC-RE, and TCDLR-
RE were tested with synthetic data. The tensors of size N x N x 3 with varying N =
{1000, 2000, 3000, 4000} were considered. The low-rank tensor data M € RY*V*3 were

generated with a tensor tubal rank © by M = M, x M, where the entries of M, €

https://github.com/canyilu/LibADMM-toolbox
https://panzhous.github.io/assets/code/TCTF_code.rar
https://github.com/zhaoxile/Multi-dimensional-imaging-data-recovery-via-minimizing-the-partial-sum-of-

tubal-nuclear-norm
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RV*™3 and My € R™N*3 were independently sampled from an A/(0, 1). Then, 3cN?
elements of M were sampled uniformly to construct P (M), where ¢ is the sampling rate.

This paper takes the relative error (relerr)
relerr =|| X — M || /| M ||%

and the running time to evaluate the effectiveness and efficiency of different algorithms,
where X is the recovered tensor of P (M). Following [102], the initialized rank x© =

[1.57, 1.57, 1.57] was set for TCTF and TCDLR-RE. All experimental results are presented
in Table [6.2] and Figs. [6.1}{6.2]

In Table [6.2] our methods (TCDLR and TCDLR-RE) are compared with other four
tensor-product-based methods in terms of the running time and relerr, where x in TCDLR

is set to 0.5n according to the low tubal rank prior. The best two results for each case are

shown in bold. It can be seen from Table [6.2]and Fig. [6.1] that:

(1) In all cases, TCDLR-RE and TCDLR achieve the best performance on relerr at-
tributed to the proposed dual low-rank constraint and rank estimation. The superiority
of TCDLR on relerr demonstrates its robustness to . Besides, as shown in Fig.
(c), for TCTF, the singular values [S]; ;1 (i = 1,2, --- , n) decrease significantly
at7 = 2 and ¢+ = 72, and for TC-RE and TCDLR-RE, the singular values decrease
significantly at ¢+ = 7, which indicates that the proposed TCDLR-RE and TC-RE
estimated the tensor tubal rank more accurately than TCTF. In addition, owing to
introducing the proposed dual low-rank constraint, the singular values [S]; ;1 (i > T)

of TCDLR-RE are much close to zeros than those of TC-RE.

(2) Table[6.2] shows that TCDLR-RE and TCTF achieved the best performance in terms
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of running time, and this is because they have the same low computational complexity
(O(kI1313)) for each iteration. Attributed to the proposed rank estimation strategy,
TCDLR-RE performed better in running time than TCDLR. The running time of
TCDLR is about two times that of TCDLR-RE. Besides, Fig. [6.1] (a)-(b) show that
less running time obtained is not only because TCDLR-RE has low computational
complexity for each iteration but also because it converges to the true solution M

with fewer iterations than other methods.

In Fig. TCDLR-RE is compared with t-TNN and TC-RE which achieved better
performance on relerr than other compared methods. Fig. [6.2] presents the results of
relerr with varying c and 7 for fixed N = 1000. It was determined that a trial is successful
if relerr < 1072, i.e., the cases corresponding to the white regions were regarded as
successful recovery to M. It can be seen from Fig|6.2|that the region of correct recovery in
Fig[6.2](c) is broader than that in Fig.[6.2](a)-(b). These results demonstrate the effectiveness

and efficiency of TCDLR-RE.

6.3.2 Real-World Applications

In this subsection, all seven tensor completion algorithms were tested in terms of image
and video inpainting. ¢/, ;I3 elements were sampled uniformly from the data tensor M €

RI1*22%1s 1o generate the observation matrices or the observation tensor Pg(M).

Some implementation details are provided: (1) In these experiments, the sampling rate
was set to ¢ = 0.3. The PSNR (the peak signal-to-noise ratio), MPSNR (mean PSNR), and

running time were adopted to evaluate the effectiveness and efficiency of the method. The
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(a) Original (b) () SNN() tTNN(e) TCTF () (¢  TC-(h) TCDLR-

LRMCI[10]] [45] [51] [102] PSTNN[39] RE[65] RE

Figure 6.5: Completion of visual results on the DOTA-v2.0 Dataset with a sampling rate
of 30%: (a) The original image and the results obtained by different methods including
(b) LRMC (c) SNN, (d) t-TNN, (e) TCTF, (f) PSTNN, (g) TC-RE, and (h) TCDLR-RE,

respectively.

best results for each case are shown in bold. Assuming that X is the recovered tensor from

Po (M), the PSNR value of X is formulated as

LLI|M|?
PSNR = 10logy, <—1 = 3”M”§°> :
X = M|%

and the mean PSNR is defined as the average PSNR results of m selected images. (2) For the
matrix recovery-based method (LRMC), matrix completion was performed on each frontal
slice of the observed tensor, and the results were combined to obtain the recovered tensor. (3)
For TCTF, the initialized rank was set to x(*) = [30, 30, 30] for the dataset with a small size
(i.e., I, Iy < 700) as suggested in [102]]. Since x(*) = [30, 30, 30] did not perform well for a
large dataset, this paper empirically set the initialized rank as £(®) = [70, 70, 70] in this case.

(4) The initialized rank in TCDLR-RE was set as x(®) = [0.05,0.05, - - - , 0.05] x min(/,, I5).
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6.3.2.1 Image Inpainting

In this part, all algorithms were tested on two color image databases of different sizes: the

Berkeley Segmentation Dataset [59] and the DOTA Datasetﬂ[79, 18]].

The MPSNR and time consumption of the seven competing inpainting algorithms on
the Berkeley Segmentation Dataset are reported in Table Fig. compares the PSNR
values of different algorithms on 50 randomly selected images. From Table[6.3| and Fig.[6.3]
it can be seen that TCDLR-RE achieves the best performance in tensor recovery and took
the least running time. Meanwhile, the visual quality of the seven algorithms is reported in
Fig.[6.4] from which it can be seen that the visual quality of TCDLR-RE is more convincing.
Specifically, the enlarged area in Fig. [6.4] indicates that our TCDLR-RE well restores the
eye of the eagle, the spots of the ladybug, and the scales and fins of the fish. Compared with

LRMC and TCTF, there is less visible noise in the recovered images by TCDLR-RE.

Fig.[6.5]and Table [6.4] present the experimental results of all algorithms on the DOTA-
v2.0 dataset. As shown in Table the PSNR and running time of the seven tensor
completion algorithms on ten images indicate that: (1) the average PSNR value of TCDLR-
RE is over 0.5 dB larger than those of the comparison methods; (2) TCDLR-RE runs much
faster than other methods. Especially, the average running times of SNN, t-TNN, and PSTNN
are about six times that of TCDLR-RE. Compared with TC-RE, TCDLR-RE even runs
40 times faster. In addition, the visual recovery results given in Fig. [6.5]indicate that the
TCDLR-RE can retain more detail within the image data than other methods. Besides, there
is more spot noise caused by the image inpainting algorithm on the recovered images by

LRMC and TCTF.
4 https://captain-whu.github.io/DOTA/index.html
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Figure 6.6: Comparison of the PSNR values of all methods on 32 HSIs from the CAVE

database.
6.3.2.2 HSI Inpainting

Here, the performance of all methods was evaluated on two different hyperspectral images

(HSIs) databases: the CAVE databaseﬂ [81]] and the BGU iCVL Hyperspectral Image Dataset

(BiHID) [ (1.

The experimental results on the CAVE database and the BiHID are presented in Fig.
[6.6] Table [6.5]and Table [6.6] respectively. From these results, the following observations
are obtained. First, TCDLR-RE achieves the best PSNR and MPRNR on both datasets.
Second, on both datasets, the proposed method (TCDLR-RE) runs much faster than the
comparison methods. Especially, for the BiHID, the average running time of SNN, t-TNN,
and PSTNN is about six times that of TCDLR-RE, and TCDLR-RE runs even 60 times
faster than TC-RE. All these results demonstrate the effectiveness and high efficiency of

TCDLR-RE for HSIs.

3 http://www.cs.columbia.edu/CAVE/databases/multispectral/
® http://icvl.cs.bgu.ac.il/hyperspectral/
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6.3.2.3 Video Inpainting

In this part, the seven methods were tested on the first five videos in the GOT-10k video
databasd[33]], including “Dolphin”(1920 x 1080 x 100), “City” (1920 x 1080 x 80),
‘Dock’ (1920 x 1080 x 80), “Ship” (1280 x 720 x 71), “Handrail” (1920 x 1080 x 68),
“Penguin” (1920 x 1080 x 100), “Leg” (1280 x 720 x 100), “Chicken” (1920 x 1080 x 100),
“Bird” (1920 x 1080 x 97), and “Swan” (1280 x 720 x 100). The first 30 frames of each video
sequence were taken and converted to the gray format. In this way, a tensor M € RIt*2x1s
was constructed for a gray video sequence with a frame size of I; x I5, where I3 is the

number of frames in the video sequence.

All experimental results are given in Table [6.7) and Fig. [6.7]to show the effectiveness
and efficiency of TCDLR-RE. From the PSNR results given in Table it can be seen
that TCDLR-RE performs the best on video inpainting in most of the cases, and it runs the
fastest. Especially, compared with TCTF, our method can achieve at least 1.5 times speed-up;
compared with other tensor completion methods (including SNN, t-TNN, PSTNN, and
TC-RE), our method even achieves more than 10 times speed-up. Fig.[6.7] presents the visual
analysis for the three testing videos. The enlarged area of recovery results indicates that
TCDLR-RE performs better in restoring the details of letters and ships. These experimental

results further demonstrate the superiority of our method for large-scale data.

7 http://got-10k.aitestunion.com/

127



(a) Original (b) LRMC (c) SNN (d) t-TNN (e) TCTF (f) TC-(g) (h) TCDLR-

[LO] [45] (511 [102] RE[65] PSTNN[39] RE

Figure 6.7: The 15th frame of the visual results in the video data. From top to bottom: “city”,

“Dock”, “Handrail”.
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Figure 6.8: (a) The relerr results on the synthetic data with NV x N x 3 for different p when
sampling rate = 30% and 7 = 0.1N; (b) The PSNR results on the Berkeley Segmentation

Dataset for different p when sampling rate = 30%.
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6.3.2.4 Analysis of Parameters

In the proposed method TCDLR-RE, there are two types of parameters: the parameters in
the proposed rank estimation (such as ki, and Ky.x), and the parameters in the proposed
tensor completion model (TCDLR), where the parameters in the proposed rank estimation
can be given by the low-rank prior. Besides, according to the definition of the proposed
norm, only one tunable parameter p is involved in TCDLR when G is £,,. Therefore, in this
part, experiments were conducted on both synthetic data and real-world data to investigate
the influence of the parameter p. All results are presented in Fig. from which it can
be seen that our method with p € [0.7,0.8] achieved more stable performance in tensor

recovery.

6.3.3 Results Analysis

In terms of running time, TCDLR-RE runs much faster than other methods in all cases.
For example, on the GOT-10k video database, TCDLR-RE runs 10 times faster than SNN,
t-TNN, PSTNN, and TC-RE, three times faster than LRMC and 1.5 faster than TCTF.
The reasons are analyzed as follows. (1) Owing to the proposed dual low-rank constraint,
the t-SVD of a smaller tensor Z is computed, and the t-SVD operation with large time
consumption is avoided, thus reducing the total cost at each iteration of the algorithm from
0(1(1)1(22)]3 + L1 I5131log I3) to O(kI 1513 + 111513 log I3), where £ is an estimation of the
tensor rank. This indicates that TCDLR-RE has much lower computation complexity than
traditional methods (including LRMC, SNN, t-TNN, and PSTNN) based on t-SVD for

the case of data tensors with a low rank. (2) Fig. (c) shows that the developed rank
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estimation method in TCDLR-RE can estimate the tensor rank accurately. The comparison
of TCDLR and TCDLR-RE in Table [6.6] demonstrates the contribution of the proposed
rank estimation method for reducing the running time. (3) Besides, as shown in Fig. [6.1]
(a)-(b), TCDLR-RE converged to the optimal solution with fewer iterations than most of the

comparison methods.

Except for TCTF, most of the tensor-based methods (including SNN, t-TNN, PSTNN,
TC-RE, and TCDLR-RE) achieved a better performance than the matrix-based method
(LRMC). This is because tensor-based methods can exploit the low-rank structure in the
tensor data and utilize the relationship between different tensor slices well compared with
the matrix-based method. Compared with tensor-based methods, TCDLR-RE achieved the
best results in real-world applications. Specifically, the gap between the average PSNR
values of TCDLR-RE and the other methods is about 1 dB on the BiHID. This is because
(1) Compared with the traditional tensor methods, the proposed dual low-rank constraint
in our methods (including TCDLR and TCDLR-RE) effectively addresses the issue of
over-penalization in t-TNN-based methods and fully utilizes the low-rankness prior in tensor
data, which helps to obtain the low-rank estimation more accurately. (2) Compared with
the existing tensor factorization methods, including TCTF and TC-RE, the performance
of TCDLR-RE is robust to the tensor rank estimation as proved by Property Theorem
[6.T]and the comparison of TCDLR with other methods in Table [6.6] (3) Compared with
the estimation strategy adopted in TCTF, the proposed estimation method can estimate true

tubal rank more accurately as proved by the comparison in Fig. (©).
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6.4 Summary

This work presents an efficient and effective tensor completion algorithm. First, aiming at
the over-penalization issue in t-TNN-based methods and the difficulty in estimating the true
tensor rank for tensor data with a small sampling rate, a novel low-rank tensor completion
method with a new tensor norm is proposed, which utilizes the dual low-rank constraint.
The proposed tensor norm enables the proposed methods to be more robust to inaccurate
rank estimation and recover the low-rank tensor more accurately. Meanwhile, to avoid the
high time consumption caused by performing the t-SVD operation on a large tensor, a
trick to compute the t-SVD of a smaller tensor Z € R1***% ingstead of the original tensor
of size R11***L jg used to solve TCDLR, thus reducing the total cost at each iteration
to O(I11x13log I3 + kl11513) from 0(1(1)1(22)13 + I115131og I3) achieved by standard t-
SVD-based methods. Based on this, a novel estimation method with rank-increasing and

decreasing strategies is proposed for estimating the tensor rank «. The experimental results

demonstrate the high effectiveness and efficiency of the proposed methods.
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Algorithm 6.3: TCDLR with the proposed rank estimation (TCDLR-RE)

Input: The tensor data M € R11X12XT3 the observed set Q, p = 1.3, i = 10, ¢ = 10~°, Kmin, Fmax»
{ =min([y,I2)/50,and h = 1.
Output: X (t+1)
Initialize: t = 0, £(0), X(©), y©) 1,0 k0 ¢ N+ and Q{”) € cl2xm fori=1,2,. .. | L),
‘While not converge do
1. G = bdiag (it (Po(M) — £D) + 21 4 w)/z, ,3)):
fori=1,..., L%jdo 8
2. A§t+1) _ é§t+1)(Q§t))*;
3 BEH—U _ ((Agu-l))*ggu-l))T(Agu-l))*C—,gz);
4. Update QEHI) and ZEHD as follows:
(@), (RIFY)*] = QR((BIV)*);
Z§t+1) _ A§z+1)l—{§t+1);
5. Increase ngH'l) by (6:I7), and adjust QEHI) and ZEHU by (6:18)
and (6:19), respectively;
6. XEHI) _ GSVT(ZEHI))Q_EHn, P§t+1) _ Z§t+1)Q§t+1);
7. Decrease N§t+1) by (6:20), and adjust QEHI) and ZEHl)by ©22)
and (6:21), respectively;
end for
fori = L%J +1,...,Izdo
8. Update K§t+1>, X’Etﬂ) and PEHD as follows:

t+1 t+1 o (t+1 oo (t+1
“«E )= ’{gg—z‘)-m; Xg ) = COHJ(ng,—i)-‘-z);

P = conj(P{IH), )
end for
9. Caleulate X (t+1) = ifft (2 +Y [, 3) and PEHD = iffe(PEHY [), 3);
10. Update £¢+1) Y41 and 1,4+ by ©12), (6.13) and (©.13), respectively;
11. Check the convergence condition: || P+ — P, < ¢,
JEEHD — E0]|oy < &, [P (M) — PO — £l <&
12.t=t+ 1.

end while
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Table 6.2: Comparison of relerr and running time (seconds) on synthetic data when the

sampling rate=30% and 7 = 0.1./V.

Method t-TNN[31] TCTF[102] PSTNNI[39] TC-RE[65] TCDLR TCDLR-RE
Data relerr | time(s) | relerr |time(s) | relerr | time(s) | relerr time(s) relerr |time(s) | relerr | time(s)
n=1000 | 524E72 | 1409 |529E2| 304 |1.19E7'| 645 |506E72| 13382 |4.75E3| 629 |4.75E3| 424
n=2000 | 5.15E72 | 1591.7 | 6.85E~% | 165.6 | 2.37E~'| 7429 | 7.23E7% | 19701.8 | 5.28E~3 | 432.0 | 5.40E~3 | 228.9
n=3000 | 5.10E72 | 7837.8 | 6.81E2 | 481.0 | 3.24E~' | 2384.2 | 9.67E~2 | 634724 | 6.25E73 | 1536.0 | 6.52E3 | 644.6
n =4000 | 5.19E72 | 17870.6 | 6.81E2 | 1033.2 | 3.86E" | 5543.4 | 8.70E~2 | 131239.6 | 7.76E~3 | 3784.1 | 8.30E~3 | 1706.8

Table 6.3: Comparison of the MPSNR and total time (seconds) on the 50 randomly selected

images with a sample rate of 30% on the Berkeley Segmentation Dataset.

LRMC[10] SNNI[45] tTNN[51] TCTF[102] PSTNN[39] TC-RE[65] TCDLR-RE
MPSNR 23.26 25.76 26.78 21.41 27.32 23.64 27.83
Average time 11.69 29.17 12.46 4.07 24.63 62.60 3.58

Table 6.4: Comparison of the PSNR and running time (seconds) on 10 randomly chosen

images from the DOTA-v2.0 Dataset with a sampling rate of 30%.

) LRMC[10] SNNI[45] t-TNN([51] TCTF[102] PSTNNJ[39] TC-RE[65] TCDLR-RE

e PSNR | time(s) | PSNR | time(s) | PSNR | time(s) | PSNR | time(s) | PSNR | time(s) | PSNR | time(s) | PSNR | time(s)
1 24.93 | 137.21 | 27.59 | 209.22 | 28.98 | 163.61 | 2591 | 28.09 | 29.34 | 347.02 | 27.71 | 1113.40 | 29.94 | 24.70
2 26.94 | 128.35 | 29.43 | 198.85 | 30.68 | 161.81 | 27.48 | 28.08 | 30.92 | 320.25 | 29.22 | 1015.84 | 31.75 | 24.93
3 24.54 | 138.01 | 26.98 | 202.09 | 28.17 | 167.40 | 25.14 | 28.19 | 28.32 | 314.94 | 27.05 | 1111.42 | 28.79 | 24.47
4 29.19 | 129.75 | 32.56 | 201.79 | 34.15 | 149.11 | 29.18 | 27.75 | 34.83 | 314.63 | 31.04 | 918.00 | 36.08 | 24.50
5 24.53 | 139.80 | 27.37 | 211.15 | 29.12 | 184.40 | 24.58 | 27.70 | 29.56 | 314.76 | 27.82 | 1106.52 | 30.17 | 24.36
6 27.60 | 132.55 | 30.11 | 189.97 | 31.34 | 165.90 | 26.86 | 27.85 | 31.44 | 314.75 | 29.66 | 1024.86 | 32.55 | 24.58
7 26.00 | 136.96 | 28.23 | 189.99 | 29.20 | 168.21 | 26.47 | 27.45 | 29.41 | 314.46 | 27.98 | 1114.94 | 29.85 | 24.71
8 27.59 | 133.63 | 29.99 | 189.82 | 30.98 | 172.42 | 28.04 | 27.43 | 31.15 | 31490 | 29.59 | 101691 | 31.83 | 24.60
9 24.25 | 128.18 | 26.88 | 193.03 | 28.82 | 165.67 | 25.23 | 27.61 | 29.30 | 314.40 | 27.53 | 1111.54 | 30.10 | 24.36
10 25.33 | 135.28 | 28.30 | 189.08 | 29.46 | 156.05 | 25.57 | 27.42 | 29.70 | 314.06 | 28.38 | 1073.92 | 30.59 | 24.36

Average | 26.09 | 133.97 | 28.74 | 197.50 | 30.09 | 165.46 | 26.44 | 27.76 | 30.40 | 318.42 | 28.60 | 1060.74 | 31.16 | 24.56
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Table 6.5: Comparison of the MPSNR and average time (seconds) on the CAVE dataset with

a sampling rate of 30%.

LRMC[10] SNN[45] tTNN[51] TCTF[102] PSTNN|39] TC-RE[65] TCDLR-RE

MPSNR 34.04 40.36 44.00 31.86 44.57 40.69 45.23

Average Time 283.81 409.48 1256.16 102.28 345.62 1393.67 71.99

Table 6.6: Comparison of the PSNR and running time (seconds) on first 8 HSIs from the

BiHID with a sampling rate of 30%.

LRMC[I0] SNNI[45] t-TNN[5T] TCTF[I02] PSTNN([39] TC-RE[63] TCDLR-RE

images
PSNR | time(s) | PSNR | time(s) | PSNR | time(s) | PSNR | time(s) | psnr time psnr time PSNR | time(s)

1 39.13 | 2774.19 | 46.75 | 3850.68 | 49.98 | 5370.50 | 36.19 | 695.07 | 50.44 | 5083.09 | 46.90 | 37663.53 | 51.41 | 589.36
2 36.52 | 2822.36 | 43.56 | 3707.55 | 47.45 | 5420.99 | 33.75 | 766.11 | 47.92 | 5080.61 | 40.55 | 38794.25 | 48.75 | 585.96
3 34.62 | 3211.77 | 43.15 | 3839.95 | 47.52 | 5937.54 | 32.68 | 690.66 | 48.03 | 5170.47 | 40.88 | 40202.43 | 49.58 | 583.63
4 40.22 | 3061.57 | 49.21 | 4044.59 | 51.84 | 5478.93 | 38.80 | 697.81 | 52.36 | 5120.01 | 47.43 | 35283.78 | 53.76 | 585.62
5 35.13 | 3110.88 | 43.27 | 3910.30 | 47.90 | 5867.13 | 32.72 | 700.20 | 48.35 | 5128.86 | 44.71 | 36735.30 | 49.85 | 582.80
6 42.32 | 3032.16 | 51.01 | 4157.88 | 53.18 | 5585.10 | 36.87 | 701.17 | 53.72 | 5127.92 | 47.44 | 32960.93 | 55.26 | 581.58
7 36.63 | 3098.21 | 45.03 | 4042.21 | 49.66 | 5829.48 | 33.90 | 701.07 | 50.17 | 5167.41 | 46.49 | 35307.90 | 51.93 | 572.78

8 38.42 | 2736.59 | 46.02 | 3807.17 | 47.82 | 5087.35 | 34.76 | 681.42 | 48.28 | 5176.80 | 44.33 | 49373.34 | 49.29 | 585.03

Average | 37.87 | 2980.97 | 46.00 | 3920.04 | 49.42 | 5572.13 | 34.96 | 704.19 | 49.91 | 5131.90 | 44.84 | 38290.18 | 51.23 | 583.35
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Table 6.7: Comparison of the PSNR and running time (seconds) on videos with a sampling

rate of 30%.
LRMC[10] SNN[45] t-TNN[51] TCTF[102) PSTNN[39] TC-RE[65] TCDLR-RE
videos
PSNR | time(s) | PSNR | time(s) | PSNR | time(s) | PSNR | time(s) | psnr | time(s) | psnr time(s) | PSNR | time(s)
Dolphin

50.94 | 2074.26 | 53.01 | 8563.23 | 50.72 | 6134.07 | 45.97 | 728.90 | 50.87 | 5431.55 | 18.42 | 49285.94 | 52.37 | 470.35
(1920 x 1080 x 30)

Cit
Y 27.99 | 2158.47 | 27.83 | 7483.17 | 27.73 | 6077.03 | 26.29 | 744.79 | 28.01 | 5482.72 | 23.66 | 49053.57 | 28.91 | 482.77
(1920 x 1080 x 30)

Dock
26.87 | 2064.83 | 27.22 | 7080.09 | 27.49 | 5922.21 | 25.34 | 660.02 | 27.72 | 5534.49 | 13.34 | 50584.37 | 28.18 | 483.94

(1920 x 1080 x 30)

Shi
P 42,09 | 713.79 | 45.46 | 2486.32 | 4330 | 1186.47 | 34.97 | 327.03 | 43.61 | 1264.76 | 36.26 | 10915.48 | 46.41 | 195.41
(1280 x 720 x 30)

Handrail
35.44 | 2019.32 | 36.05 | 7653.02 | 35.34 | 6008.16 | 31.32 | 728.98 | 35.65 | 5378.40 | 16.56 | 48916.63 | 37.40 | 487.75

(1920 x 1080 x 30)

Penguin
¢ 39.92 | 2062.64 | 42.80 | 7551.00 | 40.10 | 6097.18 | 34.83 | 736.58 | 40.38 | 5484.69 | 18.06 | 49622.41 | 42.85 | 489.57
(1920 x 1080 x 30)

Le;
¢ 34.41 | 680.41 | 37.35 | 2119.52 | 36.17 | 1115.00 | 33.94 | 322.13 | 36.49 | 1272.85 | 23.30 | 10310.20 | 38.78 | 194.84

(1280 x 720 x 30)

Chicken
23.89 | 1937.22 | 25.16 | 6603.46 | 24.41 | 5787.27 | 22.02 | 724.16 | 24.59 | 5390.03 | 15.45 | 49552.65 | 25.07 | 484.86

(1920 x 1080 x 30)

Bird
27.97 | 2001.99 | 29.19 | 6640.75 | 28.37 | 5795.14 | 26.65 | 730.30 | 28.64 | 5232.23 | 19.24 | 52635.84 | 29.14 | 487.46
(1920 x 1080 x 30)

Swan
3395 | 675.05 | 3449 | 2092.67 | 33.82 | 1133.65 | 25.27 | 323.54 | 34.14 | 1252.79 | 28.24 | 10113.47 | 35.63 | 193.84

(1280 x 720 x 30)

Average 34.35 | 1638.80 | 35.86 | 5827.32 | 34.74 | 4525.62 | 30.66 | 602.64 | 35.01 | 4172.45 | 21.25 | 38099.06 | 36.47 | 397.08
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Chapter 7

Conclusions and Future Works

In this dissertation, we mainly studied TV and SPV in t-product-based methods and provided
an efficient non-convex optimization for solving t-product-based tensor recovery problems.

Based on our analysis for TV and SPV, we have the following conclusions:

* TV is commonly observed in t-product-based methods, as the t-product-based rank
depends on the application of invertible linear transforms to only one dimension of

the tensor.

» Experimental results have shown that SPV is also commonly present in t-product-
based methods, mainly due to the choice of the invertible linear transform. Specifically,
we have experimentally proven that Slice Permutation Invariance (SPI) does not hold

for Discrete Cosine Transformation and Discrete Fourier Transformation.

Therefore, we proposed a new norm (Weighted Tensor Average Rank) for handling TV and

a general solver for eliminating SPV, respectively.
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In addition to addressing TV and SPV, we have also considered the issue of over-
penalization caused by the tensor nuclear norm and the lack of an efficient non-convex
optimization framework for t-product-based methods. To overcome these challenges, we
have developed a fast non-convex optimization framework called TCDLR-RE for tensor
recovery. This framework allows for the use of a wide range of surrogate functions to
improve the performance of tensor recovery. Notably, TCDLR-RE can be applied to matrix
completion problems since matrix completion is a special case of tensor completion. The
experimental results on tensor completion and tensor robust principal component analysis

have demonstrated the effectiveness of the proposed methods.

Furthermore, the proposed methods can be extended to other low-rank recovery problems,
such as robust tensor completion and tensor outlier pursuit, which involve tensor data with
various types of noise rather than just incomplete observations and sparse noise. Additionally,
the proposed methods can be combined with non-local methods [67] to achieve better
performance. However, it is important to clarify that this dissertation does not focus on
providing specific image denoising or inpainting algorithms. Instead, the primary objective
is to investigate an effective approach for defining the tensor rank function that better
characterizes the low-rank structure in tensor data. Consequently, we have chosen not
to employ any non-local strategies and have not compared the algorithms specifically
designed for image denoising or inpainting, including those based on deep learning, in
our experimental analysis throughout this dissertation. Besides, it is worth noting that the
low-rank methods discussed in this research can be broadly applied to various computer
vision problems in an unsupervised manner. Although deep learning methods have achieved

impressive achievements in various applications over the years, they still face some problems,
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such as their interpretability and the amount of time and labor required in building and
training neural networks for a specific task. Therefore, we firmly believe that research on

low-rank methods continues to hold significant value.

Although we have specifically discussed TV, SPV, and the non-convex optimization
framework in third-order t-product-based tensor recovery in this dissertation, the Weighted
Tensor Average Rank and the general solver for eliminating SPV can be generalized to
address TV and SPV in higher-order t-product-based tensor recovery by introducing more
auxiliary variables. Moreover, by utilizing the higher-order tensor product defined in [58} 48],
TCDLR-RE can be readily applied to higher-order tensor recovery problems. I plan to
explore these generalizations in my future work. In the future, I am also interested in
theoretically proving the exact recovery guarantees provided by the proposed general solver

presented in Chapter 5.
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Appendix A

A.1 Tensor Computation

A.1.1 Basic Computation

Definition A.1. [48] (Outer Product) For vectors a; € R ay € R2,.-. a; € R, the
outer product for vectors a,, € R'" . n =1,2,--- , h will produces a tensor as follows:
C=a;0ay0a30---0ay € RI¥2xxIh (A.1)

Definition A.2. [48] (Hadamard Product) For matrices A and B with the same size I x J,

the Hadamard product of them is defined as follows:

[A]m [B]l,l [A]Lz [B]Lz e [A]l,J [B]LJ
C—A®B-— [A]Q,l.[B]Q,l [A]2,2.[B]2,2 T [A]Q,J.[B]QJ (A2)
[A]I,l [B]I,l [A]I,z [B]1,2 e [A]I,J [B]I,J
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Definition A.3. /48] (Kronecker Product) The Kronecker product of matrices A € R'*/

and B € R5*E can be defined by

[A],, B [A],,B [A],, B
[A]le [A]22B [A]zJB

C=A®B= -’ .’ . .’ (A.3)
[A]I,l B [A]I,Q B - [A]I,J B

Definition A.4. (Tensor Inner Product) [48] For tensors A, B € Cli>12XIaXxIn " the inper

product is defined as

I Ip In
<A7 B> = Z Z T Z[A]il,iz,"-,ihconj([B]iLizf",ih)
i1=lig=1  ip=1

A.1.2 Tensor Unfolding

Definition A.S. (Kiers Method-Based Mode-n Unfolding) [88] For an order-h tensor
A € RIvlxtsxxdn the mode-n unfolding matrix of A is defined as A,y = unfold,,(A) €

RIvizn li The (i, 7)-th element of Ay is defined as
[Aw)]ing = [Alivizins
where j = in 1+ >0y |(inn—p — V) TI 500 Iy |, Tnsk = I and ipy, = i for k > 0.

Definition A.6. (Block Diag Matrix) [52)] For tensors A € RIV 25 the block diag matrix

bdiag(.A) of A is defined as

bdiag(A) = o c Rifsxtals,
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A.1.3 Tensor Transpose

Definition A.7. (Conjugate transpose) [50] The conjugate transpose of a tensor A €
Chxl2xIs s the tensor AT € C2*I'*Is optained by conjugate transposing each of the

frontal slices and then reversing the order of transposed frontal slice through positions 2 to

.

Definition A.8. (Conjugate transpose induced by invertible linear transform) [52]] For any

invertible linear transform L such that
L(A)=Ax3L, (A4)

which satisfies

L'"L=LL" =¢. (A.5)
Here, (1, > 0 is a constant. The conjugate transpose of a tensor A € C''*12%s js the tensor
At e C*Iv<ds thar satisfies [L(A™)]..q, = [L(A)]L . i3 =1,2,--- , L.
A.1.4 Norms
Definition A.9. [48] (¢, Norm) Let A € RV 12XXIn ¢ norm of A is defined as

A flo=[{(ry 2, -+ in)[[[Alir o in | > O}
Definition A.10. /48] (¢,-Norm) Let A € RIV12XXIn ¢\ _norm of A is defined as
TAL= D Al

11,02, Tk
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Definition A.11. [55] (Frobenius Norm) Let A € RV12%¥In - Frobenius norm of A is

defined as

TAl= | > [AR.,.

21,22, 5

Definition A.12. /53] (¢5-Norm of vectors) Let a € RY, l5-norm of a is defined as

lals= [ a.
n

Definition A.13. (Tensor tubal rank) [50] For A € R 2% the tensor tubal rank of
A, denoted by rank(\A), is defined as the number of non-zero singular tubes of S, where
S is from the t-SVD of A = U * S * V*. We can write rank,(A) = |{i|[S];;. # 0} =

[{i][S)ii1 # 0}]. Denote a(S) = ([S]1.1.1, [S)22.1, -, [S]rr1) T in which r = rank,(.A).

Definition A.14. (Tensor spectral norm) [30] For A € R 2XIs the tensor spectral norm

is defined as || A||> = ||bcirc(A)||2.

Definition A.15. (Tensor average rank) [50] For A € R 2% the tensor average rank

of A is defined as rank,(A) = +rank(bcirc(.A)).

I3

Definition A.16. (Tensor average nuclear norm/ Tensor nuclear norm) [50] For A €
RAX2x1s | the tensor average nuclear norm is defined as || Al|... = %Hbcirc(A) ||« From

[50], we can know that || Al|.. = || A

« Where || A||. is the tensor nuclear norm of A

defined as || A||. = || A]|..

A.2 Specific Tensors

Definition A.17. (Identity tensor) [42)] The tensor T € R*1*%s is the tensor with the first

frontal slice being the identity matrix, and other frontal slices being all zeros.
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Definition A.18. (Orthogonal tensor) [42] A tensor @ € C!*"*%s js orthogonal if it satisfies

Q" +Q=0+Q"-T.

Definition A.19. (f-diagonal tensor) [42] Tensor A is called f-diagonal if each of its frontal

slices is a diagonal matrix.

Definition A.20. (Identity tensor induced by invertible linear transform) [52l] For any
invertible linear transform L defined in (A4), if the tensor T € R %13 js g tensor such
that each frontal slice of L(Z) is the identity matrix, L is called as the identity tensor

induced by L.

Definition A.21. (Orthogonal tensor induced by invertible linear transform) [32|] For any
invertible linear transform L defined in (A4)), a tensor @ € C™*1*5 s orthogonal if it

satisfies O s, O=0x;, Q' =T.
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