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Abstract

Low-rank tensor recovery methods have increasingly received attention due to their suc-

cessful applications in dimensionality reduction and data analysis. A fundamental problem

is often asked: how to define tensor rank effectively and reasonably? Several tensor rank

defining ways (such as the CP rank, the Tucker rank, and the tensor product-based rank)

have been explored to answer this question. Among them, the tensor product-based defining

way has recently become increasingly popular because of its natural generalization of the

matrix-matrix product. Although the tensor product-based rank has successfully studied the

low rankness within the tensor data, there are still two challenges. (1) Transpose Invariance

and Slice Permutations Invariance of the tensor product-based rank do not hold, causing the

performance degradation in tensor recovery and limiting its applications in the real world.

(2) Since the calculating tensor singular value decomposition (t-SVD) is required in tensor

recovery with the product-based rank, leading to high computational cost for a large tensor.

In this dissertation, we focus on solving these two problems, and the main contributions are

summarized as follows:

• We analyze Transpose Variability in tensor recovery from the view of theory and

experiment. The Weighted Tensor Average Rank is proposed and applied to the third-

order tensor robust principal component analysis to eliminate the transpose variability.

The experimental results indicate that the proposed method can more exactly explore

the low dimensional structure within the tensor data.

• We study Slice Permutations Variability (SPV) in tensor recovery from the view of

theory and experiment. We propose a novel tensor recovery algorithm by Minimum
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Hamiltonian Circle for SPV to handle slice permutation variability. The experimental

results demonstrate the effectiveness of the proposed algorithm in eliminating SPV.

• Besides, we propose a novel tensor recovery framework with a developing rank

estimation strategy that utilizes a dual low-rank constraint, reducing total cost at each

iteration of the developing algorithm to O(N3 logN + κN3) from O(N4) achieved

with standard methods, where κ was the estimation of tensor rank and far less than N .

The experiments on the synthetic and real-world data demonstrate the effectiveness

and efficiency of the proposed method.
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Chapter 1

Introduction

1.1 Background

With the rapid advances of data-intensive applications in various engineering and scientific

fields, there is a growing explosion of high-dimensional data, including images and videos,

which are difficult to store, transmit, and process. Therefore, many low-rank matrix methods

have been proposed for efficiently handling and understanding such complicated data by

exploiting low-dimensional structures in such high-dimensional data [9, 10, 8, 12, 83, 77,

21, 76, 103].

Principal Component Analysis (PCA) [21, 76] was first proposed and widely used for

dimension reduction and data analysis. The traditional PCA, which employs the Frobenius

norm, is robust against small noise perturbations but sensitive to gross sparse errors. Con-

sequently, when the data is corrupted by gross sparse errors, PCA fails to work [8, 12]. To

solve this issue, Robust PCA (RPCA) [8, 12] was proposed, which employs ℓ0-norm (i.e.,

the number of non-zero entries in a matrix) to quantify the gross sparse errors present in the

1



data. These matrix-based low-rank methods have achieved remarkable success in various

applications, including dimension reduction, as well as image and video processing.

Currently, massive amounts of high-dimensional data, including images, videos, hyper-

spectral data, and 3-D range data, have become available due to dramatic advances in

hardware for data [14]. Such real-world data/signals are naturally represented as multidi-

mensional arrays (known as tensors1). An easy way to deal with such tensor data is first

to transform the data tensor into 2D matrices, then perform the matrix-based methods on

the matrices. However, as Liu et al. [45] points out, the essential structures in the tensor

data will be lost when a higher-order tensor is transformed into a 2D matrix. Exploiting

low-dimensional structures in such tensor data in an effective way has become increasingly

important.

1.2 Low-Rank Tensor Recovery

In recent years, many low-rank tensor recovery methods have been proposed [25, 45, 50, 89,

101, 86, 85, 7, 52]. Different with matrix case, as there is no unified defining way for tensor

rank, how to define a tensor rank appropriately is an important problem in low-rank tensor

recovery. General speaking, there are three common ways to define the tensor rank functions:

1) the CANDECOMP/PARAFAC (CP) rank [40, 43, 11], 2) Tucker rank [43, 17], and 3)

tensor tubal rank [47, 30]. Inspired by the definition of the matrix rank, Kiers [40] defined

the CP rank of the tensor X as the minimum number of rank-one decomposition. However,

1 In this thesis, the tensor is the generalization of the matrix to the higher order. For example, the color image

can be regarded as a third-order tensor because of its RGB channels. Vector and matrix can be regarded as

first-order and second-order tensors, respectively.
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computing CP rank for a given tensor X is NP-hard [50], limiting the application of CP

rank in the real world. In addition, due to the breakthroughs in low-rank matrix recovery

[9, 10, 8, 12, 83, 77, 21, 76, 103], the method based on Tucker decomposition (the unfolding

matrices of the tensor) becomes more popular than the one based on CP decomposition. For

example, in [25], the rank of the tensor (Tucker rank) was defined as the sum of the ranks of

the different unfolding matrices. Besides, since the corresponding tensor rank minimization

problem is an NP-hard problem, Gandy et al. utilized the sum of nuclear norms of the

different unfolding matrices (SNN) instead of the sum of ranks for tensor recovery. However,

as stated in [50], SNN is not the convex envelope of the sum of the ranks. Therefore, a

weighted sum of the ranks of the unfolding matrices is considered in [45]. Since the tensor

recovery methods based on the weighted sum of ranks suffer from the high computation cost

of the computing of singular value decompositions (SVDs) for the large unfolding matrices,

an efficient matrix factorization method for tensor recovery is developed in [49].

More recently, tensor nuclear norm (TNN) based on the tensor-tensor product (t-product)

has attracted more attention because of its effectiveness in tensor recovery, particularly

for tensor completion [96, 51] and tensor robust principal component analysis [50]. The

resulting TNN-based models can exactly recover the true value of the problem under some

conditions as stated in [96, 51, 50]. However, the conditions are hardly satisfied in the real

world. In addition, since the information of the data is concentrated in the components

corresponding to a few largest singular values [64, 50], the larger singular values should be

penalized mildly, and the smaller ones should be penalized heavily. Whereas the TNN-based

methods treat the singular values with an equal penalty, leading to the over-penalization for

large singular values and therefore suffering from performance degradation. Therefore, many

low-rank recovery methods with non-convex surrogates of ℓ0-norm have been proposed to
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solve this issue [74, 38, 84], in which the rank function and nuclear norm can be regarded

as ℓ0-norm and ℓ1-norm of a singular vector, respectively. Since computing t-SVD in each

iteration is required, these methods cost much computation and cannot be used to handle

large-scale tensor data efficiently, where the computational complexity of t-SVD for a

tensor with the size of I1 × I2 × I3 is O(I(1)I2(2)I3 + I1I2I3 log I3), I(1) = max(I1, I2) and

I(2) = min(I1, I2). To address this issue, Zhou et al. [102] have proposed Tensor Completion

by Tensor Factorization (TCTF), which achieved significant improvement in terms of running

time if the given tensor data is low-rankness, and their proposed rank-decreasing scheme

can estimate the t-product-based tensor rank precisely.

1.3 Motivations

Although the t-product-based defining way for tensor rank is getting increasingly popular

and has achieved great success, there are still several challenges as follows: (1) as we

will discuss in this dissertation, two important properties (including Transpose Invariance

and Slice Permutations Invariance) to the t-product-based tensor rank that do not hold.

Because the t-product-based tensor recovery does not satisfy the Transpose Invariance, some

information within the data will be lost if only the low rankness of tensor data along with

one direction is considered. For slice permutation invariance, it is derived from a reasonable

assumption about the algorithm, i.e., changing data order should not affect the effectiveness

of the algorithm. We call these two interesting problems as Transpose Variability (TV) and

Slice Permutations Variability (SPV) in tensor recovery, respectively. (2) The TCTF [102] is

based on a basic hypothesis that the low-rank tensor can be approximatively decomposed to

the t-product of two skinny tensors A ∈ RI1×κ×I3 and B ∈ Rκ×I2×I3 (κ is an estimation of
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the t-product-based tensor rank), causing its over-reliance on the rank estimation strategy.

On the other hand, because of the lacking a rank-increasing scheme, the rank estimation

strategy given in [102] often underestimates the true rank, which leads to performance

degradation in TCTF. (3) Currently, the common non-convex surrogate functions of the

ℓ0-norm, including ℓp-norm (0 < p < 1) [23], ETP [26], Geman [27], Laplace [71] and

Logarithm [24], have been widely applied in the field of low-rank recovery and achieved

more satisfied performance [29, 61, 53, 89, 82]. But these non-convex low-rank recovery

methods require calculating tensor singular value decomposition (t-SVD), leading to high

computational cost for a large tensor. An efficient and effective tensor completion framework

for a wide range of surrogate functions is necessary to address the over-penalization problem

in the TNN-based methods and reduce the computational cost caused by t-SVD for the large

tensor simultaneously.

1.4 Contributions

In this dissertation, two questions are mainly asked: (i) How to define an effective tensor

rank based on the tensor-tensor product? (ii) How to solve the low-rank tensor recovery

model effectively and efficiently?

To solve the above problems, we give a new tensor rank called Weighted Tensor Average

Rank (WTAR) and a novel algorithm to eliminate transpose variability and slice permutation

variability in tensor recovery, respectively. Besides, we propose a novel tensor recovery

method with a dual low-rank constraint strategy, which aims to avoid the high computa-

tional cost in the standard t-SVD-based method, and to achieve superior recovery results

simultaneously.
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The main contributions of this dissertation are three-folds as follows:

• We initially explore an intriguing phenomenon known as TV (Tensor Variability).

To address TV in tensor recovery, we introduce a novel tensor rank called Weighted

Tensor Average Rank (WTAR), which enables us to analyze the low-rank structure

of tensor data from different dimensions of tensor data. We apply WTAR to the

third-order tensor robust principal component analysis to investigate its effectiveness.

The experimental results indicate that the proposed method is effective. The findings

related to this research have been published in an international journal [93].

• We discuss the SPV of several critical tensor recovery problems theoretically and

experimentally. The conclusion shows a vast gap between results by tensor recovery

for tensor data with different slice sequences. To overcome SPV in DFT-based tensor

recovery, we develop a novel tensor recovery algorithm by Minimum Hamiltonian

Circle for SPV (TRSPV), exploiting low dimensional subspace structures within data

tensor more exactly, which work has been published in an international conference

[100]. Furthermore, we extend our study to explore SPV in other t-product-based

methods and propose a general solution to mitigate SPV in such methods. To the best of

our knowledge, this is the first work to extensively discuss SPV in the context of tensor

recovery and provide an effective solution to mitigate its impact. The experimental

results demonstrate the effectiveness of the proposed algorithm in eliminating SPV in

tensor recovery.

• We propose a novel tensor completion framework that aims to overcome the reliance

on rank estimation strategies used in the standard tensor factorization-based tensor

recovery and tackle the computational burden associated with the standard t-SVD-
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based tensor recovery. To this end, we propose a new tensor norm with a dual low-rank

constraint, which utilizes the low tensor average rank prior and tensor tubal rank

information at the same time. In the proposed tensor norm, a series of surrogate

functions of the tensor tubal rank can be used to achieve better performance in harness

low-rankness within tensor data. It is proven theoretically that the resulting tensor

completion model can effectively avoid performance degradation caused by inaccurate

rank estimation. Meanwhile, attributed to the proposed dual low-rank constraint, the t-

SVD of a smaller tensor instead of the original big one is computed by using a sample

trick. Based on this, the total cost at each iteration of the optimization algorithm is

reduced to O(N3 logN + κN3) from O(N4) achieved with standard methods, where

κ is the estimation of the true tensor rank and far less than N . Our method was

evaluated on synthetic and real-world data, and it demonstrated superior performance

and efficiency over several existing state-of-the-art tensor completion methods. This

study has been published as a preprint on arXiv [99].

1.5 Organization

The dissertation contains seven chapters and one appendix. Each of the chapters is described

below.

• Chapter 1 mainly gives an introduction to the low-rank tensor recovery, and summa-

rizes the motivation and contribution as well.

• Chapter 2 provides a comprehensive overview of the related work in this paper, orga-

nized into four main parts. (1) The first part introduces various tensor rank functions,
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discussing their properties and applications. (2) The second part focuses on several

prominent low-rank tensor recovery models. It presents a detailed explanation of

Tensor Principal Component Analysis (TPCA), Tensor Robust Principal Component

Analysis (TRPCA), and Tensor Completion (TC). (3) The third part delves into opti-

mization algorithms commonly used in tensor recovery. It covers essential methods

such as the Tensor Singular Value Threshold (TSVT), Generalized Tensor Singular

Value Threshold (GTSVT), Block Coordinate Descent (BCD), and Alternating Direc-

tion Method of Multipliers (ADMM). (4) The final part introduces three representative

applications of the low-rank tensor recovery models in computer vision.

• Chapter 3 delves into an in-depth exploration of Total Variation (TV) in tensor recov-

ery. It introduces the Weighted Tensor Average Rank (WTAR) as a novel approach

to address TV in tensor recovery. The WTAR is specifically applied to the third-

order tensor robust principal component analysis, allowing for an investigation of its

effectiveness in studying the low-rankness present in the tensor data.

• Chapter 4 focuses on the investigation of Slice Permutation Variability (SPV) in

Discrete Fourier Transformation (DFT)-based tensor recovery, which is a specific case

of a special case of t-product-based tensor recovery. Specifically, we discuss SPV in

several key DFT-based tensor recovery problems theoretically and experimentally. A

novel algorithm called TRSPV. This algorithm is specifically applied to third-order

tensor robust principal component analysis to investigate its effectiveness.

• Chapter 5 studies the issue of SPV in other t-product-based tensor recovery further.

Specifically, we deeply analysis SPV in three cases in t-product-based tensor recovery,

including DFT-based methods, Discrete Cosine Transform (DCT)-based methods,
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and Random Orthogonal Matrix (ROM)-based methods experimentally. We provide

a general solver to overcome the issue of SPV in t-product-based tensor recovery.

The experimental results demonstrate the effectiveness of the proposed algorithm in

eliminating SPV.

• Chapter 6 gives a novel efficiency and effective tensor recovery framework with a

developed rank estimation method that involves the convex surrogate and a series of

non-convex surrogates. We compare several state-of-art methods on tensor completion

problems to investigate the effectiveness of the proposed method.

• Chapter 7 gives the conclusions and future works.

• Appendix presents some definitions and symbols used in this dissertation. Some

tensor computations and the definitions of specific tensors are given in A.1 and A.2,

respectively.
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Jiang, Xiaoqin Zhang; funding acquisition: Xiaoqin Zhang, Xianta Jiang.
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Chapter 2

Related works

In recent years, a massive amount of high-dimensional data, including images, videos,

hyper-spectral data, and 3-D range data, became available due to the dramatic advance in

hardware for data [14]. The real-world data or signals are often naturally represented as

multidimensional arrays, which are commonly referred to as tensors. These tensors often

lie in some low-dimensional sub-spaces or manifolds approximately. To exploit such low-

dimensional structures in tensor data, low-rank tensor recovery methods have been proposed

and widely applied in color images and videos denoising [50], image inpainting [78, 66],

video background modeling [8, 98, 50], and hyperspectral image restoration [25].

Exploiting low-dimensional structures in such tensor data has become increasingly

important. As a powerful computational tool for tensor analysis, low-rank tensor recovery

has been widely applied in color images and videos denoising [50], image inpainting [78, 66],

video background modeling [8, 98, 50], and hyperspectral image restoration [25].

In this chapter, I will introduce the three different ways of defining the tensor rank

including CP rank, Tucker rank, and tensor product-based rank first. Then, I will introduce
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Table 2.1: Notations

Notations Descriptions Notations Descriptions

R real field C complex field

A, B, D, · · · sets |A| the number of elements of set A

a, b, c, · · · scalars Im(a), Re(a), Conj(a) imaginary part of a, real part of a, and conjugate of a, respectively

a, b, c, · · · vectors [a]i, ai i-th element of a

A, B, C, · · · matrices ai,j , [A]i,j (i, j)-th element of matrix A

[A]i,:, ai,: the i-th row vector of A [A]:,j , a:,j the j-th column vector of A

0 null tensor I identity matrix

FN N ×N DFT matrix AT conjugate transpose of A

A −→ B B can be obtained by elementary row or column transformations of A A, B, C, · · · tensors

Ā the result of DFT on A along the 3-rd dimension [A]i1,i2,··· ,ih , ai1,i2,··· ,ih (i1, i2, · · · , ih)-th element in A

[A]i1,i2,: (i1, i2)-th tube [A]i1,:,:, [A]:,i2,:, [A]:,:,i3 i1-th horizontal slice, i2-th lateral slice, and i3-th frontal slice, respectively

A† pseudo-inverse of A Ā, Āi Ā = bdiag(Ā), Āi = [Ā]:,:,i

ATf frontal slice-wise conjugate of A ∈ CI1×I2×I3 , i.e., [ATf ]:,:,i = [A]T:,:,i for i = 1, 2, · · · , I3 ATL , AT ATL = L−1(L(A)Tf ) and AT = ifft(ĀTf , [], 3), respectively.

A, B, C, · · · functions A⃗, B⃗, C⃗, · · · ordered sequences

the application of tensor product-based rank in tensor recovery, involving TPCA (Tensor

Principal Component Analysis), TRPCA (Tensor Robust Principal Component Analysis),

and Tensor Completion (TC), because of its superior performance in studying the low-

rankness of the tensor data. Subsequently, the optimization algorithms for solving the convex

and non-convex approximation of these models and their variants have been introduced.

Several typical applications in computer vision of these models (including color images and

video denoising, image inpainting, and video background modeling) will be introduced in

the final. I have summarized the symbols in this dissertation relating to matrices, tensors,

and sets in Table 2.1. Some related notations and definitions are provided in the Appendix

for detailed explanations, and I will utilize footnotes to indicate their location.
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2.1 Tensor Rank

In matrix recovery, the rank function, i.e., rank(·), is commonly employed to assess the

correlations between the columns and rows of the matrix, i.e., the low-rankness of the matrix.

As a result, rank(·) has been utilized in early works [37, 8] to address the tensor case by

transforming the tensor into 2D matrices. However, taking the color image with size of

512× 512× 3 as an example, when we transform a tensor into the matrix
Y r

Y g

Y b

 =


yr
1 yr

2 · · · yr
512

yg
1 yg

2 · · · yg
512

yb
1 yb

2 · · · yb
512

 , (2.1)

the essential structure in
(

yr
k yg

k yb
k

)
for k = 1, 2, · · · , 512 will be lost after vec-

torization, where Y r =

(
yr
1 yr

2 · · · yr
512

)
, Y g =

(
yg
1 yg

2 · · · yg
512

)
and

Y b =

(
yb
1 yb

2 · · · yb
512

)
are RGB channels of the image, respectively. Besides, some

correlation information between different channels will be lost, such as the correlation

between yb
1 and yg

2.

Therefore, three different types of tensor rank functions, including CP rank, Tucker rank,

and tensor tubal rank, are proposed to explore the low rankness within the tensor data more

accurately. The inspiration for these three tensor rank functions comes from three equivalent

definitions of matrix rank, which are as follows:

D1: the minimum number of rank one decomposition of the given matrix;

D2: the number of orthonormal column (or row) vectors of the given matrix;

D3: the number of non-zero singular values of the given matrix.
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In this section, we are going to introduce these three different definitions of tensor rank

function in turn.

2.1.1 CP Rank

From the D1, a matrix X ∈ RI1×I2 with rank R can be decomposed into

X =
R∑

r=1

a(1)
r a(2)T

r =
R∑

r=1

a(1)
r ◦ a(2)

r , (2.2)

where a
(j)
r ∈ RIj for j = 1, 2, and the symbol ◦ denotes the outer product defined in

Definition A.1. Canonical Polyadic (CP) Decomposition can be obtained by extending (2.2)

to the tensor case[31, 32], which is introduced in Definition 2.1.

Definition 2.1. (Canonical Polyadic Decomposition) For A ∈ RI1×I2×···×Ih , the Canonical

Polyadic (CP) Decomposition of A can be denoted as

A =
R∑

r=1

a(1)
r ◦a(2)

r ◦· · ·◦a(h)
r =

R∑
r=1

gr,r,··· ,ru
(1)
r ◦u(2)

r ◦· · ·◦u(h)
r = G×1U 1×2U 2×3· · ·×hUh,

(2.3)

where G ∈ RR×R×···R is called as core tensor1 being diagonal tensor whose (r, r, · · · , r)-th

element is gr,r,··· ,r = ∥a(1)
r ∥2∥a(2)

r ∥2 · · · ∥a(h)
r ∥2, and U k = [

a
(k)
1

∥a(k)
1 ∥2

,
a
(k)
2

∥a(k)
2 ∥2

, · · · , a
(k)
R

∥a(k)
R ∥2

] ∈

RIk×R is a matrix with orthogonal columns for k = 1, 2, · · · , h.

The symbol ×n in (2.3) denotes the Mode-n product defined as follows.

Definition 2.2. (Mode-n product)[48] Let A ∈ RI1×I2×···×Ih and B ∈ RL×In . Then the

mode-n product of A and B is defined as C = A×nB ∈ RI1×I2×···In−1×L×In+1···×Ih , where

[A×n B]i1,··· ,in−1,l,in+1,··· ,ih =
∑
in

[A]i1,i2,··· ,ih [B]l,in . (2.4)
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Figure 2.1: Illustration of CP Decomposition for a third-order tensor.

Figure 2.2: Illustration of the Kiers Method-Based Mode-n Unfolding for a third-order

tensor.
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From the definition of Mode-n product, we know that C(n) = BA(n) if C = A×n B,

where A(n) is Kiers Method-Based Mode-n Unfolding2 of A. To enhance understanding,

I give illustrations of CP Decomposition and Kiers Method-Based Mode-n Unfolding in

Figs. 2.1-2.2, respectively.

Based on CP decomposition, Kolda and Bader [43] have adopt the minimum number of

tensor rank-one decomposition (CP decomposition) of the given tensor X ∈ RI1×I2×···×Ih

as the CP rank:

rankcp(X ) = min{R|X =
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(h)
r ,a(j)

r ∈ RIj for j = 1, 2, · · · , h}.

(2.5)

From (2.5), it is evident that the definition of CP rank is equivalent to the rank function

when h = 2. However, computing the CP rank is generally NP-hard, which greatly restricts

its application in tensor recovery. Therefore, a new way of defining the tensor rank based on

Tucker Decomposition is proposed, and it has received more extensive attention compared

to the CP rank.

2.1.2 Tucker Rank

Definition 2.3. [72] (Tucker Decomposition) For A ∈ RI1×I2×···×Ih , the Tucker Decomposi-

tion of A can be denoted as

A = G×1U 1×2U 2×3 · · ·×hUh =

R1∑
r1=1

R2∑
r2=1

· · ·
Rh∑

rh=1

gr1,r2,··· ,rnu
(1)
r1
◦u(2)

r2
◦· · ·◦u(h)

rh
, (2.6)

where the core tensor G ∈ RR1×R2×···Rh is full tensor, and U k = [u
(k)
1 ,u

(k)
2 , · · · ,u(k)

Rk
] ∈

RIk×Rk is a matrix with orthogonal columns for k = 1, 2, · · · , h.
1 Here, the diag elements of G play the similar roles as singular values in the matrix.
2 Please refer to Definition A.5 for the specific definition of Kiers Method-Based Mode-n Unfolding.
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Figure 2.3: Illustration of Tucker Decomposition for a third-order tensor.

To better understand Tucker Decomposition, I give its illustration in Fig. 2.3.

According to the definition of Mode-n product, we can see that there has a matrix

H ∈ RI1···In−1In+1···Ih×I1···In−1In+1···Ih such that A(n) = UnÂ(n)H , where Â = G ×1

U 1 ×2 U 2 ×3 · · · ×n−1 Un−1. Thus, we have rank(A(n)) ≤ Rn(1 ≤ n ≤ h). The Tucker

rank 3[43] of tensor A is defined as

ranktr(A) = (rank(A(1)), rank(A(2)), · · · , rank(A(h)).

Comparing definitions of CP Decomposition and Tucker Decomposition, it can be easily

concluded that

rank(A(n)) ≤ rankcp(A)(1 ≤ n ≤ h). (2.7)

Therefore, if A is a low CP rank tensor, A(n) should be low rank for n = 1, 2, · · · , h.

Based on the Tucker rank, Gandy et al. given a new tensor rank function that is defined as∑h
n=1 rank(A(n)) [25]. By considering different unfolding modes, this tensor rank function

3 In some literature [48], it is called as the multilinear rank or n-rank.
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can effectively characterize the correlation information across different tensor slices. It

allows for the incorporation of inter-slice relationships, enhancing the ability of the rank

function to capture the underlying structure of the tensor. Taking into account the variation

in the low-rankness of A(n) for different n, Liu et al. [45] give a weighted sum of the ranks

of the unfolding matrices
∑h

n=1 αnrank(A(n)), where αn (n = 1, 2, · · · , h) are weight

parameters satisfied
∑h

n=1 αn = 1.

It is worth noting that the weights play an important role in the weighted sum of ranks-

based methods, and the best choice for the weights is unknown if without any prior. Thus, a

new tensor rank based on the maximum rank of a set of unfolding matrics is proposed to

promote the low-rankness of unfolding matrics of the recovered tensor [94].

2.1.3 Tensor Rank Based on Tensor-Tensor Product

Recently, the rank based on the tensor-tensor product (t-product) has received more and

more attention because of its effectiveness in tensor recovery [33, 97]. The t-product of any

two third-order tensors is defined as follows.

Definition 2.4. (t-product) [42] Let A ∈ RI1×I2×I3 and B ∈ RI2×L×I3 . Then the t-product

A ∗B is defined to be a tensor of size I1 × L× I3,

A ∗B = fold(bcirc(A) · unfold(B)), (2.8)

where

bcirc(A) =



[A]:,:,1 [A]:,:,I3 · · · [A]:,:,2

[A]:,:,2 [A]:,:,1 · · · [A]:,:,3
...

... . . . ...

[A]:,:,I3 [A]:,:,I3−1 · · · [A]:,:,1


,
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Figure 2.4: Illustration of t-SVD for a third-order tensor.

unfold(A) =



[A]:,:,1

[A]:,:,2
...

[A]:,:,Ih


∈ RI1I3×I2 ,

and fold(·) is its inverse operator i.e., fold(unfold(A)) = A.

Then, the tensor version of Singular Value Decomposition (t-SVD) can be given based

on the t-product. From [50], we know that any tensor A ∈ RI1×I2×I3 can be factorized as

A = U ∗ S ∗ VT as illustrated in Fig. 2.4, where U ∈ RI1×I1×I3 and V ∈ RI2×I2×I3 are

orthogonal4, and S ∈ RI1×I2×I3 is a f-diagonal tensor5. As C = A∗B implies C̄ = Ā⊙f B̄

from [50], we can calculate the t-SVD of A by Ā = Ū ⊙f S̄ ⊙f V̄
Tf , where ⊙f stands for

frontal slices product defined as follows.

Definition 2.5. (Frontal slices product) For A,B ∈ CI1×I2×I3 , the frontal slices product of

A and B is defined as C = A⊙f B, where [C]:,:,i3 = [A]:,:,i3 [B]:,:,i3 , i3 = 1, 2, · · · , I3.

Algorithm 2.1 presents the details of computing t-SVD for a given tensor Y .

After obtaining S by t-SVD, we can define the rank of A as the number of non-zero

4 Please refer to Definition A.18 for the specific definition of the orthogonal tensor.
5 Please refer to Definition A.19 for the specific definition of the f-diagonal tensor.
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Algorithm 2.1: t-SVD [50]
Input: Y ∈ RI1×I2×I3 , λ > 0.

Output: U , S and V .

1. Compute the result of DFT on Y along the 3-rd dimension by using the Matlab

command Ȳ = fft(Y , [], 3).

2. Compute each frontal slice of Ū , S̄ and V̄ from Ȳ by

for i = 1, ..., ⌊ I3+1
2
⌋ do

[Ū i, S̄i, V̄ i] = SVD(Ȳ i);

end for

for i = ⌊ I3+1
2
⌋+ 1, · · · , I3 do

Ū i = Conj(Ū (I3−i+2));

S̄i = S̄I3−i+2;

V̄ i = Conj(V̄ I3−i+2);

end for

3. U = ifft(Ū , [], 3), S = ifft(S̄, [], 3) and V = ifft(V̄ , [], 3), where ifft is the

inverse operation of fft.

singular tubes in S:

rankt(A) = |{i|[S]i,i,: ̸= 0}| = |{i|[S̄]i,i,: ̸= 0}| = |{i|[S]i,i,1 ̸= 0}|, (2.9)

which is known as tensor tubal rank [50]. The first equality in (2.9) follows from S̄ =

S ×3 F I3 and S = S̄ ×3 F
−1
I3

, where F I3 is the I3 × I3 discrete Fourier matrix. And the

second equality holds from [S]i,i,1 =
1
I3

∑I3
j=1[S̄]i,i,j . Additionally, considering the number

of non-zero singular elements in S, we can define the rank of a tensor as

ranka(A) =
1

I3
|{(i, i, i3)|[S̄]i,i,i3 ̸= 0}| = 1

I3
rank(Ā) =

1

I3
rank(bcirc(A)), (2.10)
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which is known as the average tensor rank [50]. The last equality in (2.10) holds from

the property of the DFT [50]. From rankt(A) = |{i|[S̄]i,i,: ̸= 0}| and ranka(A) =

1
I3
|{(i, i, i3)|[S̄]i,i,i3 ̸= 0}|, we can easily conclude that

ranka(A) ≤ rankt(A). (2.11)

Besides, from ranka(A) = 1
I3
rank(bcirc(A)) and (2.7), we have

ranka(A) ≤ max ranktr(A) ≤ rankcp(A). (2.12)

Therefore, the low average rank assumption is more easily satisfied in the real world [50].

Furthermore, from (2.9) and (2.10), we can observe that the tensor product-based rank

allows us to analyze the low-rank properties of [Ā]:,:,i3 that correspond to different frequency

information from the 3rd direction of A for different i3, simultaneously. Specifically, [Ā]:,:,i3

for small i3 captures the low-frequency information within all [A]i1,i2,:, representing the

small changes in [A]i1,i2,:, while [Ā]:,:,i3 for larger i3 captures the high-frequency information

within all [A]i1,i2,:, representing the fast-changing parts and noise in [A]i1,i2,:. Therefore, the

tensor product-based tensor rank can effectively distinguish the detailed information from

the noise within the tensor.

Drawing inspiration from the expression C = A∗B = ((A×3F I3)⊙f (B×3F I3))×3

F−1
I3

, various definitions for tensor product and tensor rank can be established by replacing

F I3 with other invertible linear transforms. In this dissertation, the tensor average rank and

tensor tubal rank are referred to as DFT-based methods due to their reliance on the Discrete

Fourier Transform (DFT).

Definition 2.6. (t-product induced by invertible linear transform) [52] Let L : RI1×I2×I3 −→
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RI1×I2×I3 be a invertible linear transform such that

L(A) = A×3 L, (2.13)

which satisfies

LTL = LLT = ℓL. (2.14)

Here, ℓL > 0 is a constant. Its inverse mapping is defined as

L−1(A) = A×3 L
−1. (2.15)

For A ∈ RI1×I2×I3 and B ∈ RI2×L×I3 , the t-product based on the invertible linear

transform L is defined as

A ∗L B = L−1(L(A)⊙f L(B)). (2.16)

The computation of the corresponding t-SVD is given as follows can be obtained by

Algorithm 2.2. The tensor tubal rank and tensor average rank based on the invertible linear

Algorithm 2.2: t-SVD induced by the invertible linear transform L [52]
Input: Y ∈ RI1×I2×I3 , λ > 0.

Output: U , S and V .

1. Compute ȲL = L(Y).

2. Compute each frontal slice of ŪL, S̄L and V̄L from ȲL by

for i = 1, ..., I3 do

[[ŪL]:,:,i, [S̄L]:,:,i, [V̄L]:,:,i] = SVD([ȲL]:,:,i);

end for

3. U = L−1(ŪL), S = L−1(S̄L) and V = L−1(V̄L).
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transform L are defined as

rankt,L(A) = |{i|[S̄L]i,i,: ̸= 0}|,

and

ranka,L(A) =
1

ℓL
|{(i, j, k)|[S̄L]i,j,k ̸= 0}| = 1

ℓL

I3∑
i3

rank([ĀL]:,:,i3),

respectively. The invertible linear transform L in (2.16) can be the Discrete Cosine Transform

(DCT) and Random Orthogonal Matrix (ROM) [52].

2.2 Low-Rank Tensor Recovery Based on t-Product

The rise of low-rank models in recent years started roughly with introducing of the matrix

completion (MC) problem [9, 10]. But in fact, principal component analysis (PCA) [76]

was given and widely used in data dimensionality reduction long before MC was proposed.

In this part, I will introduce three basic tensor recovery models based on the tensor average

rank that extend from the matrix models, including PCA, Robust PCA, and MC, to recover

a low-rank tensor from the observation tensor with various perturbations.

2.2.1 Tensor Principal Component Analysis

Assuming Y is a tensor data with small noise perturbation, based on the low-rank prior

in the tensor data Y , we have Y = X + E ∈ RI1×I2×I3 , where X is low tensor average

rank, and E represents the noise and redundant information in the tensor data. The goal of

Tensor Principal Component Analysis (TPCA) is to look for a low-rank approximation and

approximately recover the tensor data from the noised observation Y , thus can be formulized
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as

X opt = argmin
X∈RI1×I2×I3

λranka(X ) +
1

2
∥Y −X∥2F , (2.17)

where X is low rank tensor, and λ > 0 is parameter to balance the low-rankness and fidelity

of X . Form [93], we have X̄opt = [Ū Ȳ ]:,1:k[S̄Ȳ ]1:k,1:k([V̄ Ȳ ]:,1:k)
T , where Ū Ȳ , S̄Ȳ , V̄ Ȳ

can be obtained by SVD of Ȳ and k is the minimal integer such that [S̄Ȳ ]k,k >
√
2λ. Since

the information of the data is concentrated in the components corresponding to a few largest

singular values [64, 50], we can remove the noise and redundant information in the tensor

data by solving (2.17).

2.2.2 Tensor Robust Principal Component Analysis

In TPCA, the Frobenius norm is imposed on the tensor E denoting the noise within the data

to characterize the magnitude of small noise perturbation. By using the Frobenius norm,

the principal components are robust to small noise perturbation, but sensitive to the outliers

[50]. Based on the sparsity prior to the outliers, for given tensor data P ∈ RI1×I2×I3 , Tensor

Robust Principal Component Analysis (TRPCA) [50] is given as

min
L,S

ranka(L) + λ∥S∥0 s.t. P = L+ S, (2.18)

where L is low-rank and S is sparse. Compared to the Frobenius norm, the ℓ0-norm can

characterize the magnitude of the sparse tensor better.

TRPCA aims to exactly recover the low-rank tensor from tensor data with gross corrup-

tions. When both gross sparse errors and small entry-wise noise appear in the tensor data

P , P = L + S + E holds, where S and E (∥E∥F ≤ δ) stand for the gross sparse errors

and small entry-wise noise, respectively. The tensor version of Stable Principal Component
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Pursuit (TSPCP) [103] can be employed to handle such cases:

min
L,S

1

2
∥P −L− S∥2F + αranka(L) + γ∥S∥0, (2.19)

which can be converted to TPCA when γ −→∞.

2.2.3 Tensor Completion

From the above discussion, TRPCA and its variant (TSPCP) can effectively handle scenarios

where gross sparse errors are present and the support set of noised elements is unknown. In

situations where the support set of noised elements is known, the TRPCA problem can be

transformed into a Tensor Completion (TC) problem [96, 51]. The goal of TC is to recover

a low-rank tensor X from tensor data with missing entries.

Suppose M ∈ RI1×I2×I3 is an approximate low tensor average rank tensor, and PΩ is a

linear project operator on the support set Ω composed of the locations corresponding to the

observed entries in M, i.e.,

[PΩ(M)]i1,i2,i3 =


[M]i1,i2,i3 , if (i1, i2, i3) ∈ Ω;

0, if (i1, i2, i3) /∈ Ω.

To recover a low-rank tensor X that satisfy PΩ(M) = PΩ(X ), TC can be formulated as

min
X

ranka(X ) s.t. PΩ(M) = PΩ(X ). (2.20)

If M is contaminated by the small entry-wise noise,we can express it as PΩ(M) =

PΩ(X ) +PΩ(E), where E represents the noise tensor. To handle this scenario, Robust TC

(RTC) is proposed, which is formulated as follows:

min
X

λranka(X ) +
1

2
∥PΩ(M)−PΩ(X )∥2F . (2.21)
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Since ranka(·) and ℓ0 norm involved in TRPCA, TSPCP, and TC are discrete that lead to

the NP-hard problems, we consider their convex and non-convex approximation in the next.

2.2.4 Convex and Non-Convex Approximation

2.2.4.1 Convex Approximation

The core idea of convex approximation adopted in low-rank recovery is using the convex

envelopes of the tensor average rank and l0-norm to replace the tensor average rank and

l0-norm in the tensor recovery model, respectively. In [50], Lu et al. have proved the tensor

average norm defined as ∥A∥∗,a = 1
I3
∥Ā∥∗ is the convex envelope of the tensor average

rank within the unit ball of the tensor spectral norm, where the tensor spectral norm of A is

defined as ∥A∥2 = ∥Ā∥2.

Therefore, the convex approximation of TRPCA and TSPCP can be written as

min
L,S
∥L∥∗ + λ∥S∥1 s.t. P = L+ S (2.22)

and

min
L,S

1

2
∥P −L− S∥2F + α∥L∥∗,a + γ∥S∥1, (2.23)

respectively.

For TC, its convex version can be formulated as

min
X
∥X∥∗ s.t. PΩ(M) = PΩ(X ). (2.24)

Since (2.22), (2.23) and (2.24) are convex, we can use an iterative algorithm to solve

them, which will be introduced in the next section. Because of the orthogonal property of

the invertible linear transforms, some essential properties in matrix recovery models are

satisfied in (2.22) and (2.24) as well, such as their exact recovery guarantee [96, 50, 51].
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Table 2.2: Examples of surrogate functions of ℓ0, where γ > 0.

Name G(x)

ℓp [23] xp, 0 < p < 1

Geman [27] x
x+γ

Laplace [71] (1− exp(−x
γ
))

LOG [57] log(γ + x)

Logarithm [24] 1
log(γ+1)

log(γx+ 1)

ETP [26] 1−exp(−γx)
1−exp(−γ)

2.2.4.2 Non-Convex Approximation

Although the exact recovery of convex approximation-based methods is guaranteed in theory

[52], the conditions for the exact recovery are hardly met in the real world. Besides, the

convex approximation-based methods treat the singular values with an equal penalty, leading

to the over-penalization of large singular values. A number of non-convex-based tensor

recovery methods have been proposed to solve this issue [39, 74, 38, 44, 84, 36, 68]. Kong et

al. [44] have proposed a new tensor Schatten-p norm for getting a better approximation to the

tensor nuclear norm, leading to a better tensor completion performance. The corresponding

theoretical analysis has provided the performance guarantees for the resulting model. Jiang

et al. proposed a non-convex approximation named partial sum of the tensor nuclear norm

(PSTNN) that only penalizes the small singular values and leaves the large ones to preserve

the low-rank structure of the tensor effectively [39]. Furthermore, Xu et al. [84] proposed

a non-convex surrogate strategy for tensor multi-rank by using the Laplace function, in

which the weight for each singular value is updated adaptively. The basic idea of these

27



non-convex-based tensor completion methods is to replace the tensor average norm with its

non-convex surrogate functions. Therefore, the non-convex approximation of TRPCA and

RTC can be summarized in the following models:

min
L,S
∥L∥∗,G + λ∥S∥G s.t. P = L+ S, (2.25)

and

min
X

λ∥X∥∗,G +
1

2
∥PΩ(M)−PΩ(X )∥2F , (2.26)

respectively. Here, ∥X∥∗,G = 1
I3

∑r
i=1 G(σi(X̄)), ∥S∥G =

∑
i1

∑
i2

∑
i3
G([S]i1,i2,i3), G :

R+ −→ R+ is an increasing function listed in Table 2.2, and r = rank(X̄).

As stated in [74], if select a proper γ in G(·), we have σi(X̄j) ≤ G(σi(X̄j)) ≤ 1 for

σi(X̄j) ≤ 1, which implies

∥X∥∗ = ∥X∥∗,a6 ≤ ∥X∥∗,G ≤ ranka(X ) ≤ rankt(X )

on the set {X ∈ RI1×I2×I3 |∥X∥ ≤ 1}. Therefore, it can be concluded that ∥ · ∥∗,G is a

better approximation of tensor average rank and tensor tubal rank than tensor average norm

and tensor tubal norm. The related non-convex optimization algorithms were proposed to

solve the resulting generalized non-convex approximation of TRPCA, TC and their variants

[53, 74, 93].

2.3 Optimization Algorithm

In the following, I will introduce several iterative algorithms, which are commonly used in

the optimization problem of tensor recovery.

6 From [50], we can see that tensor nuclear norm is identity to tensor average norm.
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2.3.1 Convex Algorithm

From the mathematical formulations of the above tensor recovery models, including TRPCA

and TC, we encounter scenarios where multiple variables are involved. Since the optimiza-

tion for the multiple variables simultaneously could be expensive in practice, we adopt

iterative optimization methods to solve for the optimal variables. Taking (2.22) and (2.23)

as the examples, we are going to introduce two basic iterative optimization algorithms, in-

cluding the Block Coordinate Descent (BCD) Method and the Alternating Direction Method

of Multipliers (ADMM) and their application in convex optimization problem of tensor

recovery. And there are two convex sub-problems involved in:

argmin
X∈RI1×I2×I3

γ∥X∥1 +
1

2
∥Y −X∥2F , (2.27)

and

argmin
X∈RI1×I2×I3

α∥X∥∗ +
1

2
∥Y −X∥2F . (2.28)

The optimal solution of (2.27) can be obtained by soft thresholding shrinkage operator

(Y − γ)+, each element of which is defined as max([Y ]i1,i2,i3 − γ, 0). And the optimal

solution of (2.28) can be obtained by the following conclusion.

Theorem 2.1. [50] For any λ > 0 and Y ∈ RI1×I2×I3 , then the tensor singular value

thresholding operator obeys

D(Y , λ) ∈ argmin
X∈RI1×I2×I3

λ∥X∥∗ +
1

2
∥Y −X∥2F , (2.29)

where D(Y , λ) is obtained by TSVT (Algorithm 2.3).
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Algorithm 2.3: Tensor Singular Value Thresholding (TSVT) [50]
Input: Y ∈ RI1×I2×I3 , λ > 0.

Output: D(Y , λ).

1. Compute Ȳ by performing DFT on Y along the 3-rd dimension.

2. Perform matrix SVT on each frontal slice of Ȳ by

for i = 1, ..., ⌊ I3+1
2
⌋ do

[Ū i, S̄i, V̄ i] = SVD(Ȳ i);

W̄ i = Ū i(S̄i − λ)+V̄
T
i ;

end for

for i = ⌊ I3+1
2
⌋+ 1, · · · , I3 do

W̄ i = Conj(W̄ I3−i+2);

end for

3. Compute D(Y , λ) by performing inverse DFT on W̄ along the 3-rd dimension.

2.3.1.1 Block Coordinate Descent Method

Let us consider the unconstrained problem

min
X1,X2,··· ,Xn

F(X1,X2, · · · ,Xn). (2.30)

According to the block coordinate descent method (BCD) framework, we can solve (2.30)

iteratively as follows.

Given (X
(t)
1 ,X

(t)
2 , · · · ,X(t)

n ), we can get X(t+1)
k (k = 1, 2, · · · , n) by

X
(t+1)
k = argmin

Xk

F(X(t+1)
1 , · · · ,X(t+1)

k−1 ,Xk,X
(t)
k+1, · · · ,X

(t)
n ), (2.31)

producing the next iterate (X
(t+1)
1 ,X

(t+1)
2 , · · · ,X(t+1)

n ).
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Here, we take the problem (2.32) (Tensor Stable Principal Component Pursuit) as an

example to explain BCD.

min
L,S

1

2
∥P −L− S∥2F + α∥L∥∗ + γ∥S∥1. (2.32)

From the framework of BCD, the problem (2.32) can be iteratively solved as follows.

Step1 Given L(t), we update S by

S(t+1) = argmin
S

1

2
∥P −L(t) − S∥2F + α∥L(t)∥∗ + γ∥S∥1

= argmin
S

1

2
∥P −L(t) − S∥2F + γ∥S∥1

= (P −L(t) − γ)+. (2.33)

Step2 Given S(t+1), we update L by

L(t+1) = argmin
L

1

2
∥P −L− S(t+1)∥2F + α∥L∥∗ + γ∥S(t+1)∥1

= argmin
L

1

2
∥P −L− S(t+1)∥2F + α∥L∥∗

= D(P − S(t+1), α). (2.34)

Therefore, we can get the optimal solution of (2.32), i.e., (L̂, Ŝ), by repeating the above

steps until the algorithm convergence.

2.3.1.2 Alternating Direction Method of Multipliers

Let us consider the following constrained problem:

min
A,B
F1(A) + F2(B), s.t. G1(A) + G2(B) = C. (2.35)

The augmented Lagrangian function of (2.35) can be written as

Lµ(A,B,Y ) = F1(A)+F2(B)+⟨G1(A)+G2(B)−C,Y ⟩+ µ

2
∥G1(A)+G2(B)−C∥2F ,

(2.36)
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where µ > 0 is parameter, and Y is the Lagrange multiplier. According to the framework of

the alternating direction method of multipliers (ADMM), we can solve (2.35) iteratively:

Given (A(t),B(t),Y (t)), we can get A(t+1) and B(t+1) by

A(t+1) = argmin
A

Lµ(A,B(t),Y (t)) (2.37)

and

B(t+1) = argmin
B

Lµ(A
(t+1),B,Y (t)), (2.38)

respectively.

Given (A(t+1),B(t+1),Y (t)), we update Y by

Y (t+1) = Y (t) + µ(G1(A(t+1)) + G2(B(t+1))−C(t+1)) (2.39)

From (2.22) and (2.24), we can see that the convex approximation of TRPCA and TC

have the form (2.35), and thus can be solved by ADMM further. Here, I take (2.22) as an

example to explain the framework of ADMM. The augmented Lagrangian function of (2.22)

can be written as

Lµ(L,S,Y) = ∥L∥∗ + λ∥S∥1 + ⟨L+ S −P ,Y⟩+ µ

2
∥L+ S −P∥2F , (2.40)

where µ > 0 is parameter, and Y is the Lagrange multiplier. Then, we can solve (2.22)

iteratively:

Step 1 Given (S(t),Y (t)), we can get L(t+1) by

L(t+1) = argmin
L

Lµ(L,S(t),Y (t))

= argmin
L

∥L∥∗ + ⟨L+ S −P ,Y⟩+ µ

2
∥L+ S −P∥2F

= argmin
L

1

µ
∥L∥∗ +

1

2
∥L+ S(t) −P +

1

µ
Y (t)∥2F

= D(−S(t) +P − 1

µ
Y (t),

1

µ
) (2.41)
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Step 2 Given (L(t+1),Y (t)), we get S(t+1) by

S(t+1) = argmin
S

Lµ(L(t+1),S,Y (t))

= argmin
S

λ∥S∥1 + ⟨L(t+1) + S −P ,Y (t)⟩+ µ

2
∥L(t+1) + S −P∥2F

= argmin
S

λ

µ
∥S∥1 +

1

2
∥L(t+1) + S −P +

1

µ
Y (t)∥2F

= (−L(t+1) +P − 1

µ
Y (t) − λ

µ
)+. (2.42)

Step 3 Given (L(t+1),S(t+1),Y (t)), we update Y by

Y (t+1) = Y (t) + µ(L(t+1) + S(t+1) −P). (2.43)

Step 4 For given ρ > 1, we update µ(t+1) by

µ = min(ρµ, µ̄), (2.44)

where µ̄ is the upper bound of µ.

Therefore, we can get the optimal solution of (2.22), i.e., (L̂, Ŝ) by repeating the above

steps until the algorithm convergence, where t is for iteration number of the algorithm. The

stop criterion in the algorithm is set as

∥P −L(t+1) − S(t+1)∥F
dual_norm

,

where dual_norm = max(∥P∥2, ∥P∥∞).

2.3.2 Non-Convex Algorithm

In this subsection, I am going to introduce several optimization algorithms including Iterative

Reweighted t-TNN Algorithm and Generalized Tensor Singular Values Thresholding-based

iterative algorithms for solving the non-convex approximation of the tensor recovery models.
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2.3.2.1 Iterative Reweighted t-TNN Algorithm

By extending Iteratively Reweighted Nuclear Norm (IRNN) algorithm [53] to the tensor

case, Wang et al. have proposed Iterative Reweighted t-TNN Algorithm (IR-t-TNN) [74] to

solve the following general tensor recovery problem:

min
X∈RI1×I2×I3

λ∥X∥∗,G + L(X ), (2.45)

where G(·) satisfies Assumption 2.1, and L(·) is a loss function such that ∥∇L(X ) −

∇L(Y)∥F ≤ l(L)∥X −Y∥F for some constant l(L) > 0 (In other words, L(·) is Lipschitz

gradient continuous.).

Assumption 2.1. G(·) : [0,+∞)→ [0,+∞) satisfies

A1 G(x) is a continuous, monotonically non-decreasing, and concave function;

A2 G(0) = 0, limx−→+∞
G(x)
x

= 0,

Since G(·) is concave on [0,+∞), we have

G(σi(X̄j)) ≤ G(σi(X̄
(t)
j )) + w

(t)
i,i,j(σi(X̄j)− σi(X̄

(t)
j )),

where w
(t)
i,i,j is the supergradient of G(x) at x = σi(X̄

(t)
j ). Therefore, we have

∥X∥∗,G ≤ ∥X (t)∥∗,G +

rj∑
k=1

I3∑
j=1

w
(t)
i,i,j(σi(X̄j)− σi(X̄

(t)
j )).

On the other hand, we have

L(X ) ≤ L(X (t)) + ⟨∇L(X (t)),X −X (t)⟩+ µ

2
∥X −X (t)∥2F ,
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where µ ≥ l(L). Therefore, Wang et al. turn to solve the following relaxed problem:

X (t+1) =argmin
X

λ(∥X (t)∥∗,G +

rj∑
k=1

I3∑
j=1

wi,i,j(σi(X̄j)− σi(X̄
(t)
j ))) + L(X (t))

+ ⟨∇L(X (t)),X −X (t)⟩+ µ

2
∥X −X (t)∥2F

=argmin
X

λ

rj∑
k=1

I3∑
j=1

w
(t)
i,i,jσi(X̄j) + ⟨∇L(X (t)),X −X (t)⟩+ µ

2
∥X −X (t)∥2F

=argmin
X

λ

rj∑
k=1

I3∑
j=1

w
(t)
i,i,jσi(X̄j) +

µ

2
∥X −X (t) +

1

µ
∇L(X (t))∥2F . (2.46)

Since w(t)
i,i,j is the supergradient of G(x) at x = σi(X̄

(t)
j ), 0 ≤ w

(t)
1,1,j ≤ · · · ≤ w

(t)
k,k,j ≤ · · · ≤

w
(t)
min(I1,I2),min(I1,I2),j

(j = 1, 2, · · · , I3) from the antimonotone property of supergradient

[53]. Thus, we have

X (t+1) = DW(t)(X (t) − 1

µ
∇L(X (t)), λ), (2.47)

where

DW(Y , λ) = argmin
X∈RI1×I2×I3

λ∥X∥∗,W +
1

2
∥Y −X∥2F . (2.48)

And Weighted Tensor Singular Value Thresholding (WTSVT) has been proposed to solve

(2.48): DW(Y , λ) = U ∗ SW,λ ∗ VT , where SW,λ = ifft((S̄ − λW)+, [], 3) [74, 53], and

U , S̄, and V can be obtained by the t-SVD of Y : Y = U ∗ S ∗ VT .

Taking L(X ) as
1

2
∥PΩ(M)−PΩ(X )∥2F , we can solve the non-convex approximation

of RTC by IR-t-TNN (as well as its convex approximation).

2.3.2.2 Generalized Tensor Singular Values Threshold (GTSVT)-Based Iterative

Algorithms

In the IRNN algorithm, the both ∥X (t)∥∗,G +
∑rj

k=1

∑I3
j=1 w

(t)
i,i,j(σi(X̄j) − σi(X̄

(t)
j )) and

L(X (t)) + ⟨∇L(X (t)),X −X (t)⟩+ µ
2
∥X −X (t)∥2F are used to replace ∥X∥∗,G and L(X ),
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respectively, for easy solving of (2.45).

Inspired by GSVT algorithm [54], we can utilize a tighter estimation for the objective

function in (2.45) than the objective function in (2.46), and solve (2.45) iteratively as follow:

X (t+1) =argmin
X

λ∥X∥∗,G + L(X (t)) + ⟨∇L(X (t)),X −X (t)⟩+ µ

2
∥X −X (t)∥2F

=argmin
X

λ∥X∥∗,G + ⟨∇L(X (t)),X −X (t)⟩+ µ

2
∥X −X (t)∥2F

=argmin
X

λ∥X∥∗,G +
µ

2
∥X −X (t) +

1

µ
∇L(X (t))∥2F . (2.49)

Therefore, Zhang et al. [93] provides an algorithm (Algorithm 2.4) that solves the

following problem directly:

argmin
X∈RI1×I2×I3

λ∥X∥∗,G +
1

2
∥Y −X∥2F , (2.50)

which can be used for solving (2.45), and the non-convex approximation of other tensor

recovery models, including TC, TRPCA, and TSPCP (as well as their convex approximation).

The optimal solution of (2.50) has been analysed in the Theorem 2.2.

Theorem 2.2. [93] For any λ > 0 and Y ∈ RI1×I2×I3 , if G is increasing on [0,+∞), then

the tensor singular value thresholding operator obeys

DG(Y , λ) ∈ argmin
X∈RI1×I2×I3

λ∥X∥∗,G +
1

2
∥Y −X∥2F , (2.51)

where DG(Y , λ) is obtained by GTSVT (Algorithm 2.4), and TG(S̄i, λ) in Algorithm 2.4 is

defined as

TG(S̄i, λ) = argmin
S∈RI1×I2

1

2
∥S̄i − S∥2F + λ

I1∑
i1=1

I2∑
i2=1

G(|si1i2|). (2.52)

The problem (2.52) is a basic optimization problem in low-rank recovery and is widely

studied. For example, in [54], Lu et al. propose Algorithm 2.5 that that solves (2.52) to
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Algorithm 2.4: Generalized Tensor Singular Value Thresholding (GTSVT) [93]
Input: Y ∈ RI1×I2×I3 , λ > 0.

Output: DG(Y , λ).

1. Compute Ȳ by performing DFT on Y along the 3-rd dimension.

2. Perform matrix SVT on each frontal slice of Ȳ by

for i = 1, ..., ⌊ I3+1
2
⌋ do

[Ū i, S̄i, V̄ i] = SVD([Ȳ ]:,:,i);

W̄ i = Ū iTG(S̄i, λ)V̄
T
i ;

end for

for i = ⌊ I3+1
2
⌋+ 1, · · · , I3 do

W̄ i = Conj(W̄ I3−i+2);

end for

3. Compute DG(Y , λ) by performing inverse DFT on W̄ along the 3-rd dimension.

global optimality. Furthermore, Zhang et al. [90] develop a fixed point algorithm (Algorithm

2.6) that solves (2.52) to global optimality with a guaranteed super-linear convergence rate,

when the surrogate function G(·) satisfies Assumption 2.2.

Assumption 2.2. G(·) : [0,+∞)→ [0,+∞) satisfies A1−A3:

A1 G(x) is strictly concave and increasing, and G(0) = 0;

A2 G ′(x) is strictly convex;

A3 G ′′(x) is continuous on (0,+∞).

Besides, from the introduction of the iterative algorithms including BCD and ADMM, we

can see that the basic idea of these iterative algorithms is to convert a complex optimization
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Algorithm 2.5: Lu’s work [54]
Input: A real number y > 0, a number of iterations κ > 0 and a tolerance τ > 0.

Output: x∗
L = argminxFy(x) =

1
2
(y − x)2 + λG(|x|).

// Find x̂L by fixed point iteration

Initialize x
(0)
L = y, x(1)L = J1(x(0)L ) and t = 1. //J1(x) = y − λG′(x)

while |x(t)L − x
(t−1)
L | > τ & t < κ do

x
(t+1)
L = J1(x(t)L ).

if x(t+1)
L < 0 then
return x̂L = 0.

else

x̂L = x
(t+1)
L .

end

Let t = t+ 1.

end

Compare Fy(0) and Fy(x̂L) to identify the optimal solution x∗L.

problem into several optimization sub-problems, which can be easily solved. Based on that

idea, we can solve the non-convex approximation of the tensor recovery models by combing

ADMM (or BCD) with GTSVT.

Here, let us take ADMM as an example to solve the following problem.

min
L,S
∥L∥∗,G + λ∥S∥G s.t. P = L+ S, (2.53)

The augmented Lagrangian function of (2.53) can be written as

Lµ(L,S,Y) = ∥L∥∗,G + λ∥S∥G + ⟨L+ S −P ,Y⟩+ µ

2
∥L+ S −P∥2F . (2.54)

Therefore, we can solve (2.53) iteratively:
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Algorithm 2.6: Generalized Accelerating Iterative Algorithm (GAI)
Input: A real number y > 0, a threshold λ > 0, and a tolerance τ > 0.

Output: TG(y, λ) = x∗
G

7.

Let 
Fy(x) =

1
2
(y − x)2 + λG(x) ,

J1(x) = y − λG ′(x),

J2(x) = J1(x)− (J1(J1(x))−J1(x))(J1(x)−x)
J1(J1(x))−2J1(x)+x

.

a0 ← max{x|J ′
1(x) = 1 or x = 0}.

if F ′
y(a0) < 0 then
// Find x̂G by fixed point iteration

Initialize x
(0)
G ← y, t← 0

while |J1(J1(x(t)G ))− 2J1(x(t)G ) + x
(t)
G | > τ do

x
(t+1)
G = J2(x(t)G )

t← t+ 1

end

x̂G = J1(x(t)G )

else
return x̂G = a0

end

If Fy(0) > Fy(x̂G), return x∗
G = x̂G; otherwise return x∗

G = 0.
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Step 1 Given (S(t),Y (t)), we can get L(t+1) by

L(t+1) = argmin
L

Lµ(L,S(t),Y (t))

= argmin
L

1

µ
∥L∥∗,G +

1

2
∥L+ S(t) −P +

1

µ
Y (t)∥2F

= DG(−S(t) +P − 1

µ
Y (t),

1

µ
) (2.55)

Step 2 Given (L(t+1),Y (t)), we get S(t+1) by

S(t+1) = argmin
S

Lµ(L(t+1),S,Y (t))

= argmin
E

λ

µ
∥S∥1 +

1

2
∥L(t+1) + S −P +

1

µ
Y (t)∥2F

= TG(−L(t+1) +P − 1

µ
Y (t),

λ

µ
), (2.56)

where [TG(−L(t+1)+P− 1
µ
Y (t), λ

µ
)]i,j,k = TG([−L(t+1)+P− 1

µ
Y (t)]i,j,k,

λ
µ
) by Algorithm

(2.6).

Step 3 Given (L(t+1),S(t+1),Y (t)), we update Y by

Y (t+1) = Y (t) + µ(L(t+1) + S(t+1) −P). (2.57)

Step 4 For given ρ > 1, we update µ(t+1) by

µ = min(ρµ, µ̄), (2.58)

where µ̄ is the upper bound of µ.

2.3.3 Tensor Factorization-Based Algorithm

From the above discussion, we can see that solving the convex and non-convex approxima-

tion of these tensor models requires computing t-SVD of a tensor with the size of I1×I2×I3
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[69], which costsO(I(1)I2(2)I3+I1I2I3 log I3) and cannot be used to handle large scale tensor

data efficiently. To solve these issues, Zhou et al. [102] have proposed Tensor Completion

by Tensor Factorization (TCTF):

min
X ,A,B

∥X −A ∗B∥F s.t. PΩ(M) = PΩ(X ), (2.59)

where A ∈ RI1×κ×I3 , B ∈ Rκ×I2×I3 , and κ obtained by the rank estimation strategy [102]

is the estimation for the tensor tubal rank of M. The optimization problem (2.59) can be

solved by using ADMM. The total costs at each iteration of the algorithm is O(κI1I2I3 +

I1I2I3 log I3), which achieved significant improved performance for the case of κ≪ I(2).

2.4 Representative Applications

In this section, we are going to introduce several representative applications of TRPCA and

TC, including image and video denoising, image inpainting, and background subtraction.

2.4.1 Image and Video Denoising

With the development of multimedia, as a basic task in the field of computer vision, images,

and video denoising is always a research hotspot. The goal of image and video denoising

is to remove various kinds of noise from one or multiple noised images and videos and

preserve the details and texture information within the observed visual data.

In the past decade, a large number of image and video denoising methods have been

proposed [70, 20, 60, 13, 62, 15, 22, 5, 2], in which the noise with specific distribution (such

as Zero-Mean Gaussian Noise and Zero-Mean Gaussian-Impulse Mixed Noise) are assumed

to approximate the noise in the real world. Generally speaking, the existing denoising
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Figure 2.5: Self-similarity of natural image: there are some similar image patchs in one

image

methods are mainly classified into local methods [70, 20, 60, 13, 62, 15, 22] and non-local

methods [5, 2]. Local methods usually perform kernel convolution operations on the local

spatial domain of the noised visual data. Since the local methods do not use the global

information and structure in the visual data, resulting in blurring and losing of details

in the denoised images. In contrast, non-local methods often achieve a better denoising

performance by using the self-similarity property of natural images as shown in Fig. (2.5)

[5]. For example, Buades et al. [5] have proposed the Non-local Mean Method (NLM) that

greatly facilitated the development of the field of image denoising. The NLM makes full use

of the self-similarity of natural images, and the value of the center of the reference image

block can be estimated after a simple weighted average of these similar blocks, in which the

similarity is calculated by the Euclidean distance between the image blocks.

Inspired by NLM, a large number of non-local similar block-based image denoising

methods have emerged [56, 19, 16, 28, 91, 92, 69]. The main idea of non-local block-

based image denoising methods is to improve the image denoising effect by exploiting the

similarity between different similar blocks of the whole image (or within a large domain).
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In addition, a potential assumption is that if the matrix formed by column vectorization

of those similar blocks is approximated to a low-rank matrix. This low-rank assumption

is directly or indirectly used in image denoising algorithms [56, 19, 16, 28, 91]. However,

as stated in [92], it will lead to the loss of the spatial information within the image blocks

if staking similar blocks into the matrix. To deal with this issue, tensor-based denoising

methods have been proposed [92, 69], in which the similar blocks are stacked into tensors

instead of the matrix. The tensor-based non-local denoising methods consist of three basic

steps: patch grouping [13], low-rank tensor recovery, and aggregation. The detail of each

step is explained as follows:

(1) Patch grouping: We divide the noisy data P into a set of overlapping images blocks.

Then, we search for K non-local similar image blocks of the given reference image

blocks across the whole data by utilizing block matching [13]. For the case of Zero-

Mean Gaussian-Impulse Mixed Noise, since the impulse noise will seriously affect

block matching results, Zhang et al. [91] give use the adaptive center-weighted median

filter (ACWMF) to detect the random-valued impulse noise before utilizing block

matching and introduce a characteristic tensor to record the position corresponding to

impulse noise.

(2) Low-rank recovery: Stacking the obtained non-local similar image blocks and the

given reference image blocks together, we get a tensor Ps. For the case of mixed

noise, Ps satisfies

Ps = X s +Zs + Es,

where X s is a clean tensor with low-rankness, Zs stand for small noise such as zero-

mean Gaussian noise, and Es is a sparse tensor composed of impulse noise within Ps.
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Therefore, we have

min
L,S
∥X s∥∗ + λ∥Es∥1 s.t. ∥Ps −X s − Es∥F ≤ ϵ, (2.60)

where λ is a penalty parameter to balance the low-rankness of X s and the sparseness

of Es. The problem (2.60) can be converted to

(X̂s, Ês) = argmin
X s,Es

α∥X s∥∗ + γ∥Es∥1 +
1

2
∥Ps −X s − Es∥F . (2.61)

If λ −→∞, ∥Es∥0 −→ 0, and (2.61) is converted to

X̂s = argmin
X s

∥X s∥∗ +
1

2
∥Ps −X s∥F . (2.62)

Therefore, in addition to the mixed noise, (2.61) can be also used to deal with the case

of zero-mean Gaussian noise.

(3) Aggregation: We reconstruct the denoised image X̂ by aggregating all the denoised

patches X̂s together.

(4) Adding back a part of removed noise: To remain the image detail, we add back a

part of removed noise by

P̂ = X̂ + α0(P − X̂ − Ê).

We repeat the above steps until the algorithm convergence. The whole progress is presented

in Fig. 2.6. From the above process, we can see that low-rank recovery plays a crucial role

in non-local image denoising. By replacing (2.61) with other variants of TRPCA, we get

various non-local image denoising methods.
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Figure 2.6: Sequence diagram for image recovery

2.4.2 Image and Video Inpainting

The goal of image and video inpainting is to recover the images and videos from the observed

visual data with missing elements. Inspired by the non-local similar block-based image

denoising methods, Song et al. [67] have proposed the non-local-based image and video

inpainting method to make full use of the self-similarity property in natural images. The

detail of each step is explained as follows:

(1) Pre-processing: Since the missing elements in the images will seriously affect block

matching results, Song et al. [67] use a triangular-based linear interpolation algorithm

[75] to estimate the values in the missing positions. By doing this, we get a preliminary

estimate for the clean images, which is denoted as P̂ .

(2) Patch grouping: Similar to the non-local image denoising method, we get a set of

overlapping images blocks by dividing the noisy data P , and then searches for K

non-local similar images blocks of the given reference image blocks across P̂ by

utilizing block matching [13].

(3) Low-rank recovery: Stacking the obtained non-local similar images blocks and the
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given reference image blocks together, we get a tensor Ps, which satisfies

PΩ(Ps) = PΩ(X s),

where X s is a recovered tensor with low-rankness, and PΩ is a linear project operator

on the support set Ω composed of the locations corresponding to the observed entries

in Ps. Therefore, we have

X̂s = argmin
X s

∥X s∥∗ s.t. PΩ(Ps) = PΩ(X s). (2.63)

(4) Aggregation: We reconstruct the denoised X̂ by aggregating all the denoised patches

X̂s together.

Similarly, by replacing (2.63) with other variants of TC, we can obtain various non-local

image inpainting methods.

2.4.3 Background Subtraction

The task of background modeling is to separate the foreground (moving objects) E and the

background X in a video P . Therefore, we have

P = X + E .

Since the moving objects in the video occupy only a small portion of pixels, the tensor E

corresponding to the foreground in the video is sparse. Besides, since the static background

changes slightly, the tensor X corresponding to the background should be a low-rank tensor.

Therefore, background modeling can be regarded as a TRPCA problem [50], which is

formulized to

(X̂ , Ê) = argmin
X ,E

∥X∥∗ + λ∥E∥1 s.t. P = X + E , (2.64)

where X̂ is the separated background.
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2.5 Summary

In this chapter, I have introduced various tensor rank functions, namely CP rank, Tucker rank,

and t-product-based tensor rank. These rank functions correspond to the three equivalent

definitions of matrix rank, i.e., D1-D3, respectively. In other words, they can be seen as

extensions of the three equivalent definitions of matrix rank. Unlike the matrix case, these

three tensor functions are equivalent only when tensor order h = 2. Because of the superior

performance of t-product-based methods in studying the low-rankness of the tensor data,

we have mainly introduced several basic t-product-based-tensor recovery methods, their

optimization, and several representative application in computer vision, including color

images and video denoising, image inpainting, and video background modeling.

From the discussion on low-rank recovery-based non-local image inpainting and de-

noising, we can observe the critical role played by low-rank recovery models. By utilizing

different variants of TRPCA (or TC), we obtain various non-local image denoising methods

(or image inpainting methods). However, it is important to note that this dissertation does not

aim to provide specific image denoising or inpainting algorithms. Rather, the goal is to in-

vestigate an effective approach for defining the tensor rank function that better characterizes

the low-rank structure in tensor data. Therefore, in the remaining part of this dissertation,

when conducting experiments on data denoising and inpainting, we will not employ any

non-local strategies presented in Chapter 2.4. Instead, the entire noisy data (or data with

missing elements) will be considered as the observation tensor in the tensor recovery model,

such as P in (2.22), unless otherwise specified.
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Chapter 3

Handling Transpose Variability in

t-Product-Based Tensor Recovery

3.1 Introduction

Although the tensor ranks based on t-product are effective and widely used, there are still a

few limitations: (1) The tensor tubal rank is based on the Discrete Fourier Transformation

(DFT) in the 3-rd dimension of the tensor. As a result, the tensor tubal ranks of the resulting

tensors obtained by performing different transpose operators on the tensor may be different,

which may lead to the tensor recovery results relying on the transpose operators. In this

paper, this issue is referred to as Transpose Variability of Tensor Recovery (TVTR). A tensor

recovery algorithm has TVTR property if the results of the algorithm are relying on the

transpose operators. It can be reasonably imagined that some information within tensor data

(the relationship of various views from different dimensions of tensor data) will be lost if

only one dimension is considered in a tensor recovery algorithm with TVTR property. (2)
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Although it is proven that the true value of the models can be exactly recovered under certain

conditions for TRPCA based on ℓ1-norm (i.e., relax ℓ0-norm and rank function to ℓ1-norm

and nuclear norm respectively.) These strong conditions often cannot be guaranteed in the

real world.

To overcome the aforementioned limitations, this paper focuses on the recovery of a

low-rank tensor from a third-order data tensor contaminated by both gross sparse errors

and small entry-wise dense noise. The contributions of this work are three-fold. First, to

our best knowledge, TVTR is firstly discussed in this paper. Second, to deal with TVTR,

a new tensor rank called Weighted Tensor Average Rank (WTAR) is given. Meanwhile,

WTAR is applied to the tensor-robust principal component analysis, and a new low-rank

tensor recovery model called Tensor Recovery based on WTAR (TRWTAR) is obtained. In

addition, we prove that the worst-case error bounds of the recovered tensor are established

by TRWTAR (in Theorem 3.3). Third, inspired by the literature on non-convex optimization

[23, 57, 24, 71, 87, 26] (see Table 2.2), this paper provides a general algorithm that solves

both the convex surrogate and a series of non-convex surrogates of the proposed framework

(not limited to the surrogate functions in Table 2.2). The study results contribute to the

broad landscape of tensor recovery by delineating an effective measure of tensor rank and

providing theoretical and algorithmic advances in robust tensor recovery problems.

3.2 Transpose Variability in Tensor Recovery

It can be seen from Definitions A.13 and A.16 that the tensor tubal rank and tensor nuclear

norm are based on t-SVD, in which discrete Fourier transform is applied on the 3-rd

dimension of the tensor. Therefore, the transpose operations of the tensor directly affect the
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tensor recovery methods based on the two norms (including the tensor tubal rank and tensor

nuclear norm). An example is given in the following to illustrate this point: Let A ∈ R2×2×2,

in which [A]:,:,1 =

 −0.1241 1.4090

1.4897 1.4172

, [A]:,:,2 =

 0.6715 0.7172

−1.2075 1.6302

.

Definition 3.1. (Mode-1 conjugate transpose) The conjugate transpose of a tensor A ∈

CI1×I2×I3 is denoted as AT1 ∈ CI1×I3×I2 , which is obtained by conjugate transposing each

of the horizontal slices.

Definition 3.2. (Mode-2 conjugate transpose) The conjugate transpose of a tensor A ∈

CI1×I2×I3 is denoted as AT2 ∈ CI3×I2×I1 , which is obtained by conjugate transposing each

of the lateral slices.

Definition 3.3. (Mode-3 Conjugate transpose) The conjugate transpose of a tensor A ∈

CI1×I2×I3 is denoted as AT3 ∈ CI2×I1×I3 , which is obtained by conjugate transposing each

of the frontal slices.

For a third-order tensor A ∈ RI1×I2×I3 , six tensors are obtained by all possible transpose

operations for A: A = (AT1)T1 ∈ RI1×I2×I3 , B1 = AT2 ∈ RI3×I2×I1 , B2 = (AT2)T3 ∈

RI2×I3×I1 , B3 = AT1 ∈ RI1×I3×I2 , B4 = (AT1)T3 ∈ RI3×I1×I2 and B5 = AT3 ∈ RI2×I1×I3 .

From the top row of Table 3.1, it can be seen that the tensor singular values of A, AT2 ,

and AT1 are different. Considering the following key optimal problem in low-rank tensor

recovery

D(Y , λ) = argmin
X∈RI1×I2×I3

λ∥X∥∗ +
1

2
∥Y −X∥2F , (3.1)

this is the proximal operator of the tensor nuclear norm. To solve the problem shown in

Eq.(3.1), Liu et al. proposed an optimal algorithm (see the Algorithm 2.3) in [50]. The
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A AT2 (AT2 )T3 AT1 (AT1 )T3 AT3

σ(·)

 3.2988

0.4407


 3.1631

0.9183


 3.1631

0.9183


 3.0859

1.2910


 3.0859

1.2910


 3.2988

0.4407



σ(bcirc(·))



3.7558

2.8417

0.5970

0.2843





3.7505

2.5758

1.2586

0.5780





3.7505

2.5758

1.2586

0.5780





3.3331

2.8387

1.5338

1.0482





3.3331

2.8387

1.5338

1.0482





3.7558

2.8417

0.5970

0.2843



Table 3.1: First row: the tensor singular values of six tensors that are obtained by all possible

transpose operations for A. Second row: the singular values of the block circulate matrix of

the six tensors.

Algorithm 2.3 reveals that D(Bi, λ) is not equivalent to the transpose of D(A, λ) for some

λ, when σ(A) ̸= σ(Bi). Therefore, it can be concluded that the tensor nuclear norm-based

tensor recovery methods have TVTR property. Note that, as stated in [50], Eq.(3.1) is

equivalent to

D(Y , λ) = argmin
X∈RI1×I2×I3

λ∥X∥∗,a +
1

2
∥Y −X∥2F . (3.2)

Therefore, for the tensor average nuclear norm-based tensor recovery methods, a similar

conclusion can be obtained.

As discussed above, the effectiveness of the tensor recovery methods based on the two

norms (including tensor nuclear norm and tensor average nuclear norm) is affected by the

transpose operations on the data tensor, but this is ignored by traditional tensor recovery

methods. An intuitive approach to solve this problem is to consider all possible transpose

operations in the definition of tensor rank.
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3.3 Proposed Methods

3.3.1 Weighted Tensor Average Rank

In this section, the TVTR is discussed in detail, and a new tensor rank is given to better

explore the low-rank structure within a data tensor.

Definition 3.4. (Weighted tensor tubal rank) Define weighted tensor tubal rank rankwt(·)

as:

rankwt(A) =
3∑

k=1

αkrankt(ATk), (3.3)

where αk(k = 1, 2, 3) indicates the weights which sum to 1.

Definition 3.5. (Weighted tensor average rank) Define weighted average tensor rank

rankwa(·) as:

rankwa(A) =
3∑

k=1

αkranka(ATk), (3.4)

where αk(k = 1, 2, 3) indicates the weights which sum to 1.

Definition 3.6. (Weighted tensor nuclear norm) Define weighted tensor nuclear norm ∥ · ∥wt

as:

∥A∥wt =
3∑

k=1

αk∥ATk∥∗, (3.5)

where αk(k = 1, 2, 3) indicates the weights which sum to 1.

Definition 3.7. (Weighted tensor average nuclear norm) Define weighted tensor average

nuclear norm ∥ · ∥wa as:

∥A∥wa =
3∑

k=1

αk∥ATk∥∗,a, (3.6)

where αk(k = 1, 2, 3) indicates the weights which sum to 1.
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Property 3.1. For A ∈ RI1×I2×I3 , σ(bcirc(A)) = σ(bcirc(AT3)).

Proof.

bcirc(AT3) =



[A]T:,:,1 [A]T:,:,I3 · · · [A]T:,:,2

[A]T:,:,2 [A]T:,:,1 · · · [A]T:,:,3
...

... . . . ...

[A]T:,:,I3 [A]T:,:,I3−1 · · · [A]T:,:,1



−→



[A]T:,:,1 [A]T:,:,2 · · · [A]T:,:,I3

[A]T:,:,2 [A]T:,:,3 · · · [A]T:,:,1
...

... . . . ...

[A]T:,:,I3 [A]T:,:,1 · · · [A]T:,:,I3−1



=



[A]:,:,1 [A]:,:,2 · · · [A]:,:,I3

[A]:,:,2 [A]:,:,3 · · · [A]:,:,1
...

... . . . ...

[A]:,:,I3 [A]:,:,1 · · · [A]:,:,I3−1



T

−→



[A]:,:,1 [A]:,:,I3 · · · [A]:,:,2

[A]:,:,2 [A]:,:,1 · · · [A]:,:,3
...

... . . . ...

[A]:,:,I3 [A]:,:,I3−1 · · · [A]:,:,1



T

= bcirc(A)T . (3.7)

Therefore, Property 1 holds.

Theorem 3.1. For A ∈ RI1×I2×I3 , if α1 = α2 = α3 =
1
3
, ∥A∥wa = ∥ATs∥wa for s = 1, 2, 3.

Proof. For s = 1, since (AT1)T1 = A and (AT1)T2 = (AT2)T3 , ∥(AT1)T1∥∗,a = ∥A∥∗,a =

∥AT3∥∗,a, ∥(AT1)T2∥∗,a = ∥(AT2)T3∥∗,a = ∥AT2∥∗,a, and ∥(AT1)T3∥∗,a = ∥AT1∥∗,a by
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Property 3.1.

Therefore, ∥AT1∥wa =
∑3

k=1
1
3
∥(AT1)Tk∥∗,a =

∥(AT1)T1∥∗,a + ∥(AT1)T2∥∗,a + ∥(AT1)T3∥∗,a
3

=∑3
k=1

1
3
∥ATk∥∗,a = ∥A∥wa.

For s = 2, since (AT2)T1 = (AT1)T3 and (AT2)T2 = A, ∥(AT2)T1∥∗,a = ∥(AT1)T3∥∗,a =

∥AT1∥∗,a, ∥(AT2)T2∥∗,a = ∥A∥∗,a = ∥AT3∥∗,a, and ∥(AT2)T3∥∗,a = ∥AT2∥∗,a by Property

3.1.

Therefore, ∥AT2∥wa =
∑3

k=1
1
3
∥(AT2)Tk∥∗,a =

∥(AT2)T1∥∗,a + ∥(AT2)T2∥∗,a + ∥(AT2)T3∥∗,a
3

=∑3
k=1

1
3
∥ATk∥∗,a.

For s = 3, since (AT3)T1 = (AT2)T3 and (AT3)T2 = (AT1)T3 , ∥AT3∥wa =
∑3

k=1
1
3
∥(AT3)Tk∥∗,a =

∥(AT3)T1∥∗,a + ∥(AT3)T2∥∗,a + ∥(AT3)T3∥∗,a
3

=
∥(AT2)T3∥∗,a + ∥(AT1)T3∥∗,a + ∥(AT3)T3∥∗,a

3
=∑3

k=1
1
3
∥ATk∥∗,a.

Since ∥A∥∗ = ∥A∥∗,a as stated in [50], we have ∥A∥wa = ∥A∥wt. Therefore, the

following theorem is derived.

Theorem 3.2. For A ∈ RI1×I2×I3 , if α1 = α2 = α3 =
1
3
, ∥A∥wt = ∥ATs∥wt for s = 1, 2, 3.

3.3.2 Tensor Robust Principal Component Analysis with Weighted

Tensor Average Rank

Based on the definition of rankwt(·), TPRCA with weighted tensor average rank is defined

as follows:

min
L,S

rankwt(L) + λ∥S∥0 s.t. ∥P −L− S∥F ≤ δ, (3.8)
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where P = L + S +Z; L is low-rank; S is sparse, and Z is a small noisy perturbation

and ∥Z∥F ≤ δ. Since rankwt(·) and ℓ0-norm is discrete, the continuous version of (3.8) is

considered, which is defined as follows,

min
L,S
∥L∥wa,G + λ∥S∥G s.t. ∥P −L− S∥F ≤ δ, (3.9)

where ∥L∥wa,G =
∑3

k=1
αk

nk

∑rk
i=1 G(σi(bcirc(LTk))), ∥S∥G =

∑
i1,i2,i3

G(|[S]i1,i2,i3|), and

G : R+ −→ R+ is an increasing function. Note that all the surrogate functions of ℓ0 listed in

Table 2.2 satisfy this condition.

Remark 3.1. From Property 3.1, we can get the same conclusion with Theorem 3.1 easily

for ∥ · ∥wa,G , i.e., if α1 = α2 = α3 = 1
3
, ∥A∥wa,G = ∥ATs∥wa,G for A ∈ RI1×I2×I3 and

s = 1, 2, 3.

3.3.3 Tensor Recovery with Non-convex Penalty

3.3.3.1 ℓp Minimization Formulation

Taking G(·) in (3.9) as ℓp-norm, then (3.9) is turned to

min
L,S
∥L∥pwa,p + λ∥S∥pp,p s.t. ∥P −L− S∥F ≤ δ, (3.10)

where ∥L∥pwa,p =
∑3

k=1
αk

nk
(
∑rk

i=1 σi(bcirc(LTk))
1
p )p, rk = rank(bcirc(LTk)), and ∥S∥pp,p =

(
∑

i1,i2,i3
|[S]i1,i2,i3|

1
p )p. For convenience, (3.10) is referred to as TRWTAR-ℓp (where TRW-

TAR and ℓp stand for Tensor Recovery with Weighted Tensor Average Rank and ℓp-norm

respectively). It is easy to see that, for p = 1, (3.10) reduces to

min
L,S
∥L∥wa + λ∥S∥1 s.t. ∥P −L− S∥F ≤ δ, (3.11)

which is referred to as Tensor Recovery with Weighted Tensor Average Nuclear Norm

(TRWTANN).
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3.3.3.2 Worst-Case Error Bound

Here, an error bound is established under the transformed ℓp minimization problem (3.10).

Lemma 3.1. [6] Let w1, w2, . . . , wn be n positive numbers such that
∑n

k=1wk = 1. Then,

for any real numbers s and t such that 0 < s < t < ∞, and for any a1, . . . , an ≥ 0, we

have: ( n∑
k=1

wka
s
k

) 1
s ≤

( n∑
k=1

wka
t
k

) 1
t
, (3.12)

if and only if a1 = a2 = · · · = an.

Theorem 3.3. Let (L0,S0) be the pair of true low-rank and sparse tensors, and L̂ be

the solution to the optimization problem (3.10). If the average of the entries of the sparse

component S0 is bounded by T , and the carnality of the support S0 is bounded by m, then

Err(L̂) =
∥L0 − L̂∥F

M
≤ p

√
2mT p+

(2δ)p

M
p
2−1

Mp(1− 1
λ
)

, where λ > 1, M =
∏3

k=1 Ik. Remark I(1) = I2,

I(2) = I1 and I(3) = I3.

Proof. Let (L̂, Ŝ) be the optimal solution of (3.10), Ẑ = P−Ŝ−L̂, and Z0 = P−S0−L0.

By optimality, we have

||L̂||pwa,p + λ||P − Ẑ − L̂||pp,p ≤ ||L0||pwa,p + λ||P −Z0 −L0||pp,p. (3.13)

Next, recall that a function F(·) is sub-additive if F(x+ y) ≤ F(x) + F(y). According to

the result in [63], a concave function F : [0,∞)→ [0,∞) with F(0) ≥ 0 is sub-additive.

Thus, for 0 < p < 1, F(x) = |x|p is concave (x is a scalar here), |x|p is a sub-additive

function. Since the sum of sub-additive functions is sub-additive, F(x) = ∥x∥pp, x ∈ Rn is

also sub-additive, thereby implying ∥x∥pp−∥y∥pp ≤ ∥x−y∥pp. Consequently, Equation (3.13)
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implies that

||P − Ẑ − L̂||pp,p ≤
1

λ
(||L0||pwa,p − ||L̂||pwa,p) + ||P −Z0 −L0||pp,p

≤ 1

λ
||L0 − L̂||pwa,p + ||P −Z0 −L0||pp,p,

(3.14)

where the last inequality is derived from the linearity property in the definition of ∥ · ∥pwa,p

on tensors. Based on this inequality, ||L̂−L0||pp,p can be bounded as follows:

||L0 − L̂||pp,p ≤ ||P − Ẑ − L̂||pp,p + ||P − Ẑ −L0||pp,p

≤||P − Ẑ − L̂||pp,p + ||P −Z0 −L0||pp,p + ||Ẑ −Z0||pp,p

≤1

λ
||L0 − L̂||pwa,p + 2||P −Z0 −L0||pp,p + ||Ẑ −Z0||pp,p

=
1

λ

3∑
k=1

αk

I(k)

( rk∑
i=1

(σ
(k)
i )p

)
+ 2||P −Z0 −L0||pp,p + ||Ẑ −Z0||pp,p,

(3.15)

where the third inequality is derived from substituting the inequality (3.14) into the current

inequality; rk is the rank of the matrix bcirc((L0 − L̂)Tk), and σ
(k)
1 , σ

(k)
2 , . . . , σ

(k)
rk are the

rk singular values of the matrix bcirc((L0 − L̂)Tk).

Since ∥Z0∥F ≤ δ and ∥Ẑ∥F ≤ δ, ∥Z0 − Ẑ∥F ≤ 2δ. According to Lemma 3.1 and

setting wj =
1
M
,∀j = 1, . . . ,M , we have:

||Ẑ −Z0||pp,p ≤M

(
∥Ẑ −Z0∥F√

M

)p

≤ (2δ)p

M
p
2
−1

.

By Lemma 3.1, and setting wj =
1
rk
,∀j = 1, . . . , rk, we have:

(σ
(k)
1 )p + (σ

(k)
2 )p + · · ·+ (σ

(k)
rk )p

rk
≤

(√
(σ

(k)
1 )2 + (σ

(k)
2 )2 + · · ·+ (σ

(k)
rk )2

rk

)p

, (3.16)

thereby leading to

rk∑
i=1

(σ
(k)
i )p ≤ r

1− p
2

k

( rk∑
i=1

(σ
(k)
i )2

) p
2
= r

1− p
2

k ||bcirc((L0 − L̂)Tk)||pF

= r
1− p

2
k (I(k))

p
2 ||L0 − L̂||pF .

(3.17)
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Applying this inequality to the final line in (3.15) results in:

||L̂−L0||pp,p ≤
1

λ

3∑
k=1

αk

(I(k))1−
p
2

r
1− p

2
k ||L0 − L̂||pF + 2mT p +

(2δ)p

M
p
2
−1

. (3.18)

Since ||P − Z0 − L0||pp,p = ||S0||pp,p ≤ mT p, according to the generalized power-mean

inequality in Lemma 3.1 (by setting s = p, t = 1), we have:( ||S0||pp,p
m

) 1
p ≤
||S0||11,1

m
≤ T. (3.19)

Next, we show that ||L0 − L̂||pF ≤ ||L̂−L0||pp,p. Denoting L = L0 − L̂ and based on

the fact that ||L0 − L̂||F ≤ ||L0 − L̂||1, we have:

∥L∥F =

√∑
i1,i2,i3

[L]2i1,i2,i3 ≤
∑

i1,i2,i3

|[L]i1,i2,i3|

=
(( ∑

i1,i2,i3

|[L]i1,i2,i3|
)p) 1

p ≤
( ∑

i1,i2,i3

|[L]i1,i2,i3|p
) 1

p
= ∥L∥p,p,

(3.20)

where the second inequality is derived from the fact that F(x) = xp(0 < p < 1) is a sub-

additive function. Raising both sides to the power of p yields ||L0 − L̂||pF ≤ ||L̂−L0||pp,p.

Combining this inequality with Equation (3.18), we have:

||L0 − L̂||pF ≤
1

λ

3∑
k=1

αk

(I(k))1−
p
2

r
1− p

2
k ||L0 − L̂||pF + 2mT p +

(2δ)p

M
p
2
−1

. (3.21)

Rearranging the terms, we have

||L0 − L̂||pF ≤
2mT p + (2δ)p

M
p
2−1

1− 1
λ

∑3
k=1

αk

(I(k))1−
p
2

r
1− p

2
k

≤
2mT p + (2δ)p

M
p
2−1

1− 1
λ

∑3
k=1

αk

(I(k))1−
p
2

(I(k))1−
p
2

(since rk ≤ I(k) and 1− p
2
> 0), and therefore

||L0 − L̂||F ≤
p

√√√√2mT p + (2δ)p

M
p
2−1

1− 1
λ

, (3.22)

provided that λ > 1.
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To give an intuitive understanding of Theorem 3.3, consider the two most simplest cases:

• For p = 1, δ = 0, we have:

Err(L̂) =
2mT

M(1− 1
λ
)
,

where m
M

<< 1 is the sparsity coefficient, and T is bounded. Usually, the entries in

visual data are typically bounded by a constant that is not too large, i.e., the biggest

value of the entry is 255 for images. Thus, the error bound is rather small, indicating

rather good recovery.

• For p = 1, T = 0, we have:

Err(L̂) =
2δ

M
1
2 (1− 1

λ
)
,

where 1

M
1
2 (1− 1

λ
)
<< 1 for λ =∞. As suggested above, λ in (3.11) should be set to a

large enough value.

3.3.4 Optimization Based on Alternating Direction Method

This section introduces a general optimization algorithm for solving (3.9), which can be

reduced to

min
L,S

α

3∑
k=1

αk∥LTk∥∗,G + β∥S∥G +
1

2
∥P −L− S∥2F . (3.23)

To simplify (3.23), a series of auxiliary tensors Mk(k = 1, 2, 3) are introduced to replace

LTk and to remove the correlation of LTk . Then, (3.23) can be rewritten to:

min
Mk,L,S

1

2
∥P −L− S∥2F + α

3∑
k=1

αk∥Mk∥∗,G + β∥S∥G

s.t.LTk = Mk, k = 1, 2, 3. (3.24)
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To relax the above equality constraints, this paper applies the Augmented Lagrange

Multiplier (ALM) method to the above problem, and the following augmented Lagrangian

function is obtained:

Lµ(Mk,L,S,Qk) =
1

2
∥P −L− S∥2F + α

3∑
k=1

αk∥Mk∥∗,G + β∥S∥G

+ Σ3
k=1(⟨Qk,LTk −Mk⟩+

µk

2
∥LTk −Mk∥2F ), (3.25)

where µi is a positive scalar, and Qk is Lagrange multiplier tensor. According to the

framework of the alternating direction method (ADM) [3], the above optimization problem

can be iteratively solved as follows.

Step1 Given L(t) and Q(t)
k , update Mk, k = 1, 2, 3 by

M(t+1)
k = argmin

Mk

µk

2
∥(L(t))Tk −Mk +

1

µk

Q(s)
k ∥

2
F + ααk∥Mk∥∗,G

= DG((L(t))Tk +
1

µk

Q(t)
k ,

ααk

µk

). (3.26)

Step2 Given M(t+1)
k , S(t) and Q(t)

k , k = 1, 2, 3, update L by

L(t+1) = argmin
L

1

2
∥P −L− S(t)∥2F +

3∑
k=1

µk

2
∥LTk −M(t+1)

k +
1

µk

Q(t)
k ∥

2
F (3.27)

Calculate the partial derivative of the above formulation with respect to L, and set it to zero.

−P +L+ S(t) + Σ3
k=1µk(L− (M(t+1)

k − 1

µk

Q(t)
k )Tk)=0

By rearranging the term with L, we have

L(t+1) =
P − S(t) + Σ3

k=1µk(M(t+1)
k − 1

µk
Q(t)

k )Tk

1 + Σ3
k=1µk

(3.28)

Step3 Given L(t+1), update S by

S(t+1) = argmin
S

1

2
∥P −L(t+1) − S∥2F + β∥S∥G = TG(P −L(t+1), β). (3.29)
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Step4 Given Q(t)
k , L(t+1) and M(t+1)

k , k = 1, 2, 3, update L by

Q(t+1)
k = Q(t)

k + µk((L(t+1))Tk −M(t+1)
k ),∀k (3.30)

3.4 Experiments

In this section, four sets of experiments are conducted to illustrate the effectiveness of our

proposed methods. The first set of experiments is performed on the color image data contam-

inated by zero-mean Gaussian noise, and the proposed methods including TRWTANN and

TRWTAR-ℓp are compared with several state-of-the-art low-rank tensor recovery methods,

including SNN[25], Liu’s work (called Liu for short in the following)[45], SRALT-ℓp [89],

KBR [80] and TRPCA [50]. The second and third sets of experiments are performed on the

color image data and video, respectively. All of them are contaminated by the mixture of

zero-mean Gaussian noise and random valued impulse noise in different noise levels to test

the seven methods. To illustrate the robustness of the proposed methods to outliers in the

visual data and their effectiveness in practical applications, in the fourth set of experiments,

all seven methods are tested on background subtraction. The source code of SRALT-ℓp1

and KBR2 are provided by their authors, while the source code of the remaining methods

including SNN, Liu’s work, and TRPCA are provided by the LibADMM toolbox3. The

parameters of all methods are tuned to the best for each case. In addition, αk(1 ≤ k ≤ 3) in

our methods are set to 1
3
.

1 https://github.com/18357710774/SRALT_code
2 https://github.com/XieQi2015/KBR-TC-and-RPCA
3 https://github.com/canyilu/LibADMM-toolbox
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: Denoised results on “Peppers”, δ = 20. (a) Noised image (b) SNN. (c) Liu. (d)

SRALT-ℓp. (e) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-ℓp.

3.4.1 Zero-Mean Gaussian Noise: Color Image Denoising

The clean color image with a size of I1 × I2 × 3 can be approximated by low-rank tensor

L0 ∈ RI1×I2×3, and the zero-mean Gaussian noise can be regarded as small entry-wise

perturbations Z0 ∈ RI1×I2×3, which is a tensor with the entries independently sampled from

a N (0, δ2) distribution (the noised image can be obtained by P = L0 +Z0). In this part,

all the seven methods (including SNN, Liu, SRALT-ℓp, KBR, TRPCA, TRWTANN, and

TRWTAR-ℓp) are applied to color image recovery in which the color image is contaminated

by zero-mean Gaussian noise. All methods are performed on House, Lena, Peppers, F16,
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δ = 5 δ = 10

SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp

House 29.77 29.58 36.06 35.16 31.43 31.88 34.37 28.36 28.25 29.38 29.70 31.07 31.52 31.04

Peppers 32.02 31.76 34.70 32.21 31.91 32.77 34.55 28.29 28.29 28.66 29.49 30.81 31.06 30.97

Lena 32.71 32.57 35.51 33.80 32.69 33.53 35.32 28.50 28.56 29.17 30.29 31.46 31.74 31.82

Baboon 31.73 31.16 34.12 27.65 29.72 30.67 33.15 28.04 27.92 28.22 26.36 28.64 29.10 28.66

F16 33.39 33.25 36.40 33.27 33.53 34.42 36.39 28.71 28.78 30.15 30.02 31.97 32.12 32.54

Kodak image1 33.19 33.06 35.95 33.31 33.99 35.01 37.24 28.37 28.57 28.76 30.07 31.62 31.71 32.35

Kodak image2 32.68 32.61 36.55 33.90 34.76 35.71 37.43 28.29 28.53 28.75 30.75 32.50 32.42 33.00

Kodak image3 32.80 32.71 36.85 34.36 34.64 35.60 37.41 28.32 28.57 28.89 30.80 32.29 32.29 32.92

Kodak image12 33.04 32.99 37.22 36.14 35.51 36.43 38.12 28.39 28.65 29.87 31.58 32.95 32.78 33.71

Average 32.37 32.19 35.93 33.31 33.13 34.00 36.00 28.36 28.46 29.10 29.90 31.48 31.64 31.89

δ = 15 δ = 20

SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp

House 22.98 22.96 29.53 27.11 27.14 26.50 28.94 22.46 22.49 28.40 24.78 26.95 26.56 26.59

Peppers 26.23 25.68 28.85 27.22 27.75 27.73 28.96 25.24 24.88 27.36 25.43 26.90 27.17 27.47

Lena 26.74 26.22 28.96 27.87 28.52 28.58 29.87 25.69 25.38 28.22 25.93 27.59 28.02 28.31

Baboon 23.30 22.34 25.72 24.73 25.03 24.95 26.29 22.65 21.86 24.84 23.52 24.54 24.65 24.48

F16 27.14 26.34 28.52 27.59 28.94 28.87 30.31 26.00 25.54 28.42 25.58 27.88 28.17 28.58

Kodak image1 26.47 26.13 28.35 27.66 28.58 28.71 29.61 25.02 25.13 26.53 25.79 27.22 27.54 28.05

Kodak image2 27.45 27.79 30.77 28.63 30.25 30.39 30.60 25.91 26.76 26.87 26.76 28.56 29.00 29.71

Kodak image3 27.16 27.40 30.36 28.41 29.75 29.94 30.41 25.61 26.32 27.35 26.44 28.14 28.61 29.27

Kodak image12 27.57 27.98 29.53 28.74 30.78 30.95 31.23 25.99 26.86 29.67 26.58 28.89 29.38 30.35

Average 26.12 25.87 28.96 27.55 28.53 28.51 29.58 24.95 25.02 27.52 25.65 27.41 27.68 28.09

δ = 25 δ = 30

SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp

House 21.34 21.36 25.24 23.13 24.22 23.95 24.01 20.94 20.86 22.30 21.62 24.19 23.93 24.07

Peppers 24.06 23.74 24.20 23.98 25.04 25.40 25.51 23.39 23.14 21.37 22.82 24.63 25.04 25.36

Lena 24.66 24.34 25.32 24.27 25.87 26.25 26.26 23.98 23.70 22.22 22.90 25.46 25.96 26.26

Baboon 21.23 20.85 22.92 22.34 22.42 22.69 22.54 20.82 20.44 20.79 21.36 22.27 22.56 22.54

F16 24.90 24.45 27.44 24.01 26.13 26.34 26.38 24.14 23.84 24.67 22.72 25.65 26.02 26.32

Kodak image1 24.25 24.24 23.50 24.24 25.76 26.14 26.15 23.39 23.59 20.98 22.96 25.10 25.40 25.76

Kodak image2 25.65 26.15 23.20 25.23 27.87 28.20 28.23 24.68 25.41 20.63 23.92 26.91 27.17 27.71

Kodak image3 25.15 25.50 23.62 24.80 27.13 27.57 27.71 24.17 24.71 20.93 23.80 26.23 26.62 27.07

Kodak image12 25.73 26.23 27.70 24.88 28.24 28.60 28.70 24.70 25.44 23.96 23.48 27.14 27.43 28.13

Average 24.11 24.09 24.79 24.10 25.85 26.13 26.17 23.36 23.46 21.98 22.84 25.29 25.57 25.91

Table 3.2: Color image denoising results (PSNR) by different methods for the case of

zero-mean Gaussian noise.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Denoised results on “kodak image1”, δ = 30. (a) Noised image (b) SNN. (c)

Liu. (d) SRALT-ℓp. (e) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-ℓp.

Baboon, and the 1 − 3th and 12th images from the Kadak PhotoCD 4. Meanwhile, the

standard deviations of zero-mean Gaussian noise δ are set to δ = {5, 10, 15, 20, 25, 30}.

Table 3.2 shows the Peak Signal-To-Noise Ratio (PSNR) results of different methods

when the image data is corrupted by zero-mean Gaussian noise and the highest PSNR values

are marked in bold. The visual quality performance of all the methods is reported in Figs.3.1-

3.2. From these results, the following observations are made. First, the PSNR results of the

proposed methods (TRWTANN and TRWTAR-ℓp) and the other five methods (SNN, Liu,

SRALT-ℓp, KBR, and TRPCA) indicate that TRWTANN and TRWTAR-ℓp achieve the best

denoising performance in most cases. Specially, for the case of δ = 15, TRWTAR-ℓp even

outperforms the five comparing methods by at least 1dB on average PSNR. This illustrates

the effectiveness of the methods based on the weighted tensor average rank for handling

4 https://webpages.tuni.fi/foi/GCF-BM3D/index.html
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Gaussian noise. Besides, the PSNR results of TRWTANN and TRWTAR-ℓp indicate that

using the non-convex surrogate strategy given in this paper can improve the effectiveness of

the original method (TRWTANN) significantly. In addition, from Figs.3.1-3.2, it can be seen

that the three tensor recovery methods based on t-product (including TRPCA, TRWTANN,

and TRWTAR-ℓp) retain more information and details about the image, while the denoised

images obtained by SNN and Liu appear some white stripes. For the remaining two methods

including SRALT-ℓp and KBR, there are still some residual noise within the denoised image.

This validates the effectiveness of the methods based on the t-product.

3.4.2 Zero-Mean Gaussian-Impulse Mixed Noise: Color Image Denois-

ing

In this part, the proposed models are applied to image recovery, where the color image is

contaminated by the mixture of zero-mean Gaussian noise Z0 and random valued impulse

noise. Because the clean color image can be approximated by low-rank tensors, and the

random valued impulse noise with density level c can be regarded as sparse errors S0
5,

the noise can be removed from the color images P = L0 + Z0 + S0 by all the seven

methods (including SNN, Liu, SRALT-ℓp, KBR, TRPCA, TRWTANN, and TRWTAR-ℓp).

All the methods are tested on the testing image set that contains House, Lena, Peppers,

F16, Baboon, and the 1− 3th and 12th images from the Kadak PhotoCD. Meanwhile, the

noise is set to zero-mean Gaussian noise with standard deviations δ and random-valued

impulse noise with density level c. Besides, in this experiment, (δ, c) is set to (δ, c) =

{(0, 5%), (5, 5%), (5, 10%), (15, 10%), (15, 15%), (30, 15%)}.
5 3cI1I2 entries in S0 uniformly distributed in [0, 255], and the remain entries in S0 are zeros.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Denoised results on “F16”, (δ, c) = (15, 10%). (a) Noised image (b) SNN. (c)

Liu. (d) SRALT-ℓp. (e) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-ℓp.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Denoised results on “Kodak image1”, (δ, c) = (15, 10%). (a) Noised image (b)

SNN. (c) Liu. (d) SRALT-ℓp. (e) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-ℓp.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Denoised results on “bridge-close”, (δ, c) = (10, 20%). (a) Noised data (b) SNN.

(c) Liu. (d) SRALT-ℓp. (e) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-ℓp.
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(δ, c) = (0, 5%) (δ, c) = (5, 5%)

SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp

Baboon 29.72 29.61 26.81 27.06 29.50 29.43 29.99 28.32 28.20 25.73 26.56 28.34 28.76 29.34

F16 35.84 36.03 34.66 33.91 35.71 36.40 37.69 31.81 31.79 32.19 32.09 32.22 33.17 34.01

House 30.36 31.15 32.78 39.41 31.53 32.63 32.77 29.73 30.19 30.99 33.51 30.65 30.85 30.71

Lena 34.66 34.73 35.56 35.61 34.88 35.48 36.31 31.37 31.27 32.47 32.80 31.87 32.82 33.31

Peppers 33.09 33.21 33.56 33.15 32.62 33.58 34.40 30.68 30.61 29.68 31.38 30.69 31.46 31.92

Kodak image1 34.23 35.07 30.15 33.15 38.68 37.11 38.61 30.49 30.82 27.67 31.99 32.15 33.20 33.99

Kodak image2 34.39 35.67 27.56 35.21 37.21 37.80 39.49 31.42 31.54 26.00 33.15 32.12 33.62 34.25

Kodak image3 35.37 35.69 30.35 35.87 35.99 37.40 38.96 31.41 31.55 27.71 33.38 31.91 33.45 34.06

Kodak image12 36.09 36.48 35.12 38.29 38.48 38.98 40.46 31.63 31.81 32.23 34.78 32.56 34.32 34.85

Average 33.86 34.48 31.84 34.63 34.96 35.42 36.52 30.76 30.86 29.41 32.18 31.39 32.41 32.94

(δ, c) = (10, 10%) (δ, c) = (15, 10%)

SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp

Baboon 23.23 23.16 20.48 24.46 22.74 23.95 25.26 22.67 22.57 23.04 23.15 22.21 23.41 23.55

F16 26.97 26.72 22.43 28.21 26.50 27.67 28.89 25.92 25.73 24.96 25.67 25.65 26.84 26.85

House 23.24 24.03 23.40 26.87 24.58 24.97 26.06 22.77 23.51 24.56 24.30 23.92 24.55 24.13

Lena 27.14 27.09 24.24 28.60 27.11 28.00 29.04 26.08 25.96 26.32 26.16 26.05 27.14 27.22

Peppers 26.48 26.34 24.25 27.81 25.80 26.88 27.91 25.49 25.36 26.29 25.60 24.94 26.06 26.11

Kodak image1 26.66 26.50 23.85 27.88 27.37 27.87 28.78 25.25 25.23 25.85 25.61 25.93 26.12 26.65

Kodak image2 28.21 28.24 27.23 29.22 28.37 29.34 29.44 26.56 26.74 26.02 26.88 27.05 27.49 27.50

Kodak image3 28.03 28.10 26.55 29.23 27.98 29.05 29.30 26.31 26.52 26.66 26.81 26.63 27.15 27.30

Kodak image12 28.33 28.38 25.71 29.60 28.89 29.94 29.92 26.61 26.80 27.61 26.93 27.40 27.79 27.85

Average 26.48 26.51 24.24 27.99 26.59 27.52 28.29 25.30 25.38 25.70 25.68 25.53 26.28 26.35

(δ, c) = (15, 15%) (δ, c) = (30, 15%)

SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp

Baboon 20.64 20.81 21.67 22.27 19.98 22.38 22.41 19.67 19.78 20.01 19.71 19.04 20.12 20.06

F16 24.02 24.04 24.48 25.18 23.04 25.41 25.85 22.48 22.53 22.88 21.21 21.82 22.83 22.87

House 21.66 21.70 20.05 24.90 21.64 23.16 22.96 20.47 20.36 18.03 20.59 20.28 20.58 20.38

Lena 24.69 24.76 25.21 25.55 24.04 26.19 26.38 22.84 22.88 22.82 21.09 22.32 23.50 23.48

Peppers 23.89 23.95 23.98 24.71 22.73 25.04 25.29 22.12 22.14 22.01 21.01 21.10 22.36 22.48

Kodak image1 24.40 24.46 25.49 25.02 24.19 25.59 25.94 22.65 22.67 23.06 21.11 22.56 23.09 23.14

Kodak image2 26.74 26.74 26.03 26.44 26.23 26.86 27.36 24.65 24.62 24.13 22.00 24.73 24.68 24.84

Kodak image3 26.39 26.28 25.52 26.18 25.49 26.58 27.10 23.98 23.85 22.92 22.07 23.69 24.15 24.30

Kodak image12 26.84 26.83 27.06 26.22 26.55 27.17 27.82 24.61 24.61 24.49 21.92 24.75 24.79 24.99

Average 24.36 24.40 24.39 25.16 23.77 25.38 25.68 22.61 22.60 22.26 21.19 22.25 22.90 22.95

Table 3.3: Color image denoising results (PSNR) by different methods for the case of

zero-mean Gaussian-impulse mixed noise.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Denoised results on “akiyo”, (δ, c) = (10, 20%). (a) Noised data (b) SNN. (c)

Liu. (d) SRALT-ℓp. (e) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-ℓp.

(δ, c) Video sequence SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp

(5, 10%)

templete 23.24 24.12 23.88 24.09 24.26 25.05 25.18

grandma 28.07 29.98 31.20 32.32 32.07 32.55 32.74

akiyo 27.02 28.40 29.46 29.94 30.53 31.04 31.28

bus 23.20 22.81 20.94 20.58 23.45 24.52 24.75

mobile 21.07 21.46 20.39 18.01 21.48 22.73 23.03

bridge-close 27.06 28.52 29.75 31.09 30.78 31.17 31.31

bridge-far 30.87 31.89 33.49 35.36 34.82 35.06 35.77

Average 25.79 26.74 27.01 27.34 28.19 28.87 29.15

(10, 20%)

templete 19.71 20.67 20.85 20.66 21.09 21.44 21.52

grandma 25.44 26.71 28.21 28.72 28.42 28.77 29.27

akiyo 24.20 24.82 26.18 27.60 27.16 27.52 27.99

bus 19.51 20.44 19.73 19.95 21.41 21.85 21.73

mobile 17.88 18.52 18.64 17.39 21.15 20.84 20.18

bridge-close 24.88 25.92 28.07 29.43 28.59 29.00 29.68

bridge-far 28.19 28.84 31.97 32.21 31.48 31.52 32.59

Average 22.83 23.70 24.80 25.13 25.61 25.84 26.13

Table 3.4: Results on video data with Gaussian noise and random-valued impulse noise.
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All the methods are evaluated by the PSNR value and visual results. From Table 3.3, it

can be seen that the proposed methods (TRWTANN and TRWTAR-ℓp) outperform SNN,

Liu, SRALT-ℓp, KBR, and TRPCA by a large margin in all cases on PSNR values. As shown

in Figs.3.3-3.4, the proposed methods retain more details in the denoised images. These

results indicate the superiority of the proposed methods. The performance superiority is

achieved by considering different tensor transpose operations in the progress of estimating

the latent low-rank tensor, which makes use of the information within the tensor data as

much as possible. This illustrates that the new tensor rank (WTAR) given in this paper (see

Definitions 3.4-3.5) is more reasonable in real applications than others.

3.4.3 Zero-Mean Gaussian-Impulse Mixed Noise: Video Sequence De-

noising

Similar to the case of color image denoising, video sequence denoising can also be regarded

as a low-rank tensor recovery problem. In this case, each color frame of the video is folded

in the third dimension of the data tensor L̂0 ∈ RI1×I2×I3×3 (corresponding to the color

video with the size of I1 × I2 × I3 × 3) to obtain clean tensor data L0 ∈ RI1×I2×I3×3. Then,

TRWTANN and TRWTAR-ℓp are compared with the other five methods including SNN,

Liu, SRALT-ℓp, KBR, and TRPCA on the video sequences contaminated by mixed noise

to demonstrate the effectiveness of the proposed model. In this experiment, (δ, c) is set

to (δ, c) = {(5, 10%), (10, 20%)}. Seven wildly used test videos are taken from the YUV

Video Sequences to form the testing video set 6, including templete, grandma, akiyo, bus,

mobile, bridge-close, and bridge-far. The size of each frame is 144× 176, and only the first

6 http://trace.eas.asu.edu/yuv/
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Video Clip SNN Liu SRALT-ℓp KBR TRPCA TRWTANN TRWTAR-ℓp

Airport 0.2632 0.2787 0.3485 0.0859 0.1972 0.3770 0.3837

Hall 0.4258 0.5440 0.5408 0.5548 0.4412 0.5534 0.5492

Office 0.3158 0.5278 0.5081 0.5763 0.1874 0.5552 0.5736

Pedestrian 0.2957 0.4882 0.4661 0.4124 0.3177 0.4554 0.4546

Smoke 0.1138 0.6249 0.6063 0.5160 0.0233 0.5515 0.5881

Average 0.2829 0.4927 0.4940 0.4291 0.2334 0.4985 0.5098

Table 3.5: Background subtraction results of different methods.

30 frames of each video are chosen for testing.

All the methods are also evaluated by the PSNR value and visual results, and the

evaluation results are listed in Table 3.4 and Figs.3.5-3.6. From these results, the following

observations can be obtained: (1) The methods based on t-product (including TRPCA,

TRWTANN, and TRWTAR-ℓp) obtains better results than other methods (including SNN,

Liu, SRALT-ℓp, and KBR) in the case of video denoising. As shown in Figs.3.5-3.6, the

methods based on t-product retain more information about the video. This is because all

three methods based on t-product have a recovery guarantee. Also, they can find the low-

rank subspace of tensor data more exactly and utilize the information within the real data

more effectively than other low-rank tensor recovery methods under mixed noise. (2) The

proposed methods (including TRWTANN and TRWTAR-ℓp) are more effective than other

comparing five methods. Specially, TRWTAR-ℓp outperforms other comparing methods by

at least 0.5dB on average PSNR value. This indicates that the proposed methods guarantee a

more accurate low-rank recovery than other comparing methods, and they are more robust

against noise and outliers. (3) In most cases, the results obtained by TRWTAR-ℓp are better

than those obtained by TRWTANN, indicating the effectiveness of the general algorithm

given in this paper.
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3.4.4 Background Subtraction

In this part, the proposed models are applied to the background subtraction task that aims

to separate the foreground objects from the background. The background of each frame of

the video is static and similar, and it can be regarded as a low-rank tensor L0. Meanwhile,

the moving foreground objects can be regarded as sparse noise S0, because they occupy

only a fraction of pixels in the video. Therefore, all the seven methods including SNN,

Liu, SRALT-ℓp, KBR, TRPCA, TRWTANN, and TRWTAR-ℓp are tested on the five video

sequences 7 to deal with the case of background subtraction.

To measure the background modeling output quantitatively, S(A,B) = A
⋂

B
A

⋃
B

is used

to calculate the similarity between the estimated foreground regions and the ground truths.

The quantitative results of different methods are listed in Table 3.5, and it can be seen that

the proposed model achieves the best results. Also, the following observations can be made.

First, TRPCA performs poorly in this experiment. This is because the exact recovery [50]

and the stable recovery of TRPCA require that the support Ω of the true latent sparse tensor

is uniformly distributed. However, this condition is not met in the background subtraction

application because the moving foreground objects are composed of several contiguous

regions. The proposed methods (TRWTANN and TRWTAR-ℓp) can fix this problem well.

This is because they consider different transpose operators to make use of the information

within the tensor data effectively, and they perform stably against the outliers. In addition,

it should be noted that Liu needs some additional effort to tune the weighted parameters

empirically. By contrast, in our methods, all of αk(1 ≤ k ≤ 3) are set to 1
3

so that the

proposed methods can be applied to real applications more easily.

7 http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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3.5 Summary

In this work, TVTR is discussed at first. It is discovered that if different transpose operators

are performed on the observation tensor, different results will be obtained by the tensor

recovery algorithm with TVTR property. To solve this issue, TRWTANN is taken to study

the resulting tensor by a series of transpose operators on the observation sensor, and the

information within the tensor data is utilized more effectively. Besides, to balance the

solvability and effectiveness of TRWTANN, the non-convex version (3.9) of TRWTANN,

i.e., TRWTAR-ℓp, is investigated. Then, the worst-case error bounds of the recovered tensor

are given, and a non-convex optimization algorithm based on generalized tensor singular

value thresholding (GSVT) is designed to solve the proposed model (3.11) and its non-

convex version (3.9). The experimental results validate the effectiveness of the proposed

methods. The work presented in this chapter has been published [93].

It is worth noting that the t-product-based tensor recovery still has the TV for other

invertible linear transforms because the t-product-based rank is only based on the invertible

linear transforms along with the third dimension of the tensor. But, we still can adopt the

same idea with the weighted tensor average rank for other cases, i.e., considering the low

t-product-based tensor rank from different dimensions of data tensors.
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Chapter 4

Handling Slice Permutations Variability

in DFT-Based Tensor Recovery

4.1 Introduction

Although tensor recovery based on t-product is effective and widely used, there are still

some limitations: as shown in Fig. 4.1, rearranging frontal slices sequence order of tensor

will have a significant influence on the effectiveness of tensor recovery, in which X̂ ∗
is

obtained by arranging the low-rank approximation of Ŷ (Ŷ is obtained by rearranging Y

in randomly frontal slices sequence order) in original frontal slices sequence order. Note

that the gap of two mean PSNR (Peak Signal to Noise Ratio) results even achieve 3dB. We

called this phenomenon as Slice Permutations Variability (SPV) in tensor recovery.

This paper focuses on this new problem which has not been explored so far to the best

of our knowledge. Our contributions are three-fold:
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Figure 4.1: Color video (‘bus’) (modeled as a tensor Y ∈ R144×176×90) can be approximated

by low tubal rank tensor. Here, only the first frame of visual results in (a)-(b) are presented.

(a) The first frame of the original video (b) approximation by tensor X ∗ ∈ R144×176×90

with tubal rank r = 30. (MPSNR=32.45dB) (c) approximation by tensor X̂ ∗ ∈ R144×176×90

with tubal rank r = 30. (MPSNR=29.27dB) (d) MSE results of X ∗ and X̂ ∗
comparison for

different r.

• We study SPV and Slice Permutations Invariance (SPI) of tensor recovery theoretically

and experimentally for the first time. A tensor recovery algorithm has SPI, i.e.whatever

how to change the slice order of data tensor, the solution of the algorithm will not be

changed. We prove that the tensor recovery algorithm has SPI property under certain

conditions.

• When the conditions are not met, to make tensor recovery more stable for slice

permutations on data tensor, we propose a tensor recovery algorithm for SPV (TRSPV)

to solve a basic problem (Tensor Principal Component Analysis) in tensor recovery.

In the proposed algorithm, we find a better sequence of tensor slices by solving

a Minimum Hamiltonian Circle problem. Based on the new sequence obtained by

the proposed algorithm, we can extract the intrinsic low-dimensional structure of

high-dimensional tensor data more exactly.
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• We conduct experiments to examine the SPV of TRPCA, the goal of which is to

recover a low-rank tensor from a high-dimensional data tensor with chaos slices

sequence despite both small entry-wise noise and gross sparse errors. An extension of

TRSPV, Robust Principal Component Analysis for SPV (TRPCA-SPV), is proposed

to deal with this problem. The experimental results show a much better performance of

TRPCA-SPV compared with the existing state-of-the-art tensor recovery algorithms,

and a huge gap between the results of TRPCA-SPV and TRPCA.

4.2 Slice Permutations Variability in Tensor Recovery

4.2.1 SPI of the Sum of Nuclear Norms

For matrix recovery, as we all know, singular values of the matrix will not be affected by any

row or column transformations on the matrix, which means it does not make any influence

on the effectiveness of matrix recovery to rearrange the data sequence. And we call it to row

or column transformations invariance in matrix recovery (Property 4.2 and Theorem 4.1).

Therefore, for tensor recovery based on the unfolding matrices of the tensor, SPV is satisfied

naturally (Property 4.3 and Theorem 4.2). Please refer to the supplementary material of this

paper for the detailed proof of these conclusions.

Definition 4.1. [95] P ∈ RN×N is a permutation matrix if each row and each column of P

has unique non-zero entries 1.

Property 4.1. [95] If P ∈ RN×N is a permutation matrix, then P TP = PP T = I .

Property 4.2. For A ∈ RI1×I2 , then nuclear norm satisfies row (or column) permutations
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invariance, i.e.∥PA∥∗ = ∥A∥∗ for any permutation matrix P ∈ RI1×I1 (or ∥AP ∥∗ =

∥A∥∗ for any permutation matrix P ∈ RI2×I2).

Proof. ∥PA∥∗ = ∥A∥∗ by Property 4.1 and the unitary invariant norm property.

Similarly, we can get ∥AP ∥∗ = ∥A∥∗ for any permutation matrix P ∈ RI2×I2 .

Theorem 4.1. For Y ∈ RI1×I2 , D(Y , τ) = P−1D(PY , τ) for any permutation matrix

P ∈ RI1×I1 (and D(Y , τ) = D(Y P , τ)P−1 for any permutation matrix P ∈ RI2×I2),

where D(Y , τ) = argminX
1
2
∥Y −X∥2F + τ∥X∥∗, and P−1 is inverse operator of P .

Proof.

P−1D(PY , τ) = P−1 argmin
Z

1

2
∥PY −Z∥2F + τ∥Z∥∗

= argmin
X

1

2
∥PY − PX∥2F + τ∥PX∥∗

= argmin
X

1

2
∥Y −X∥2F + τ∥X∥∗, (4.1)

where the second equation holds by letting X = P−1Z, and the third equation holds by the

Property 4.1 and Property 4.2.

Similarly, we can get D(Y , τ) = D(Y P , τ)P−1 for any permutation matrix P ∈

RI2×I2 .

Definition 4.2. [4] Let A ∈ RI1×I2×I3 , C = {i1, i2, ..., iI3 , i1} is a circle on A which com-

posed of 1, 2, 3,..., I3. And we regard {i1, i2, ..., iI3 , i1}, {i2, i3, ..., iI3 , i1, i2},...,{iI3 , i1, ..., iI3−2,

iI3−1, iI3} as the same circle.

Definition 4.3. Let Ck = {i1, i2, ..., iIk , i1} is a circle on A ∈ RI1×I2×I3 which composed

of 1, 2, 3,..., Ik. And we call O⃗k = {i1, i2, ..., iIk} is an obtained ordered array from Ck.
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Define O⃗(i) is the i-th number of the ordered array, A ◦ P(k)

O⃗k
(k = 1, 2, 3) are the results by

horizontal slice permutations, lateral slice permutations and frontal slice permutations on

A according to O⃗k, respectively, i.e.[A ◦ P(1)

O⃗1
]i,:,: = [A]O⃗1(i),:,:

, [A ◦ P(2)

O⃗2
]:,i,: = [A]:,O⃗2(i),:

and [A ◦ P(3)

O⃗3
]:,:,i = [A]:,:,O⃗3(i)

for i = 1, 2, 3, ..., Ik. (If there is no danger of ambiguity,

these are abbreviated to A ◦ P(k)(k = 1, 2, 3).) Besides, we use AO⃗ to represent A ◦ P(3)

O⃗

for convenience.

Property 4.3. For A ∈ RI1×I2×I3 , then
∑3

i=1 αi∥(A ◦ P(k))(i)∥∗ =
∑3

i=1 αi∥A(i)∥∗ for

any slice permutations P(k) i.e.(k = 1, 2, 3), where A(i) represents the mode-i unfolding

matrix of A, A ◦ P(k)(k = 1, 2, 3) stands for the result by performing horizontal slice

permutations, lateral slice permutations, and frontal slice permutations on A, respectively.

Proof. For any slice permutations P(k)(k = 1, 2, 3), exist permutation marries P i and Qi

makes unfoldi(A ◦ P(k)) = P iA(i)Qi for i = 1, 2, 3. Therefore,
∑3

i=1 αi∥unfoldi(A ◦

P(k))∥∗ =
∑3

i=1 αi∥P iA(i)Qi∥∗ =
∑3

i=1 αi∥A(i)∥∗.

Theorem 4.2. Sτ (Y) = Sτ (Y◦P(k))◦(P(k))−1(k = 1, 2, 3), where Sτ (Y) = argminX
1
2
∥Y−

X∥2F + τ
∑3

i=1
1
3
∥X(i)∥∗, and (P(k))−1 is an inverse operator of P(k).

Proof.

Sτ (Y ◦ P(k)) ◦ (P(k))−1

=(argmin
Z

1

2
∥Y ◦ P(k) −Z∥2F + τ

3∑
i=1

αi∥Z(i)∥∗) ◦ (P(k))−1

=argmin
X

1

2
∥Y ◦ P(k) −X ◦ P(k)∥2F + τ

3∑
i=1

αi∥unfoldi(X ◦ P(k))∥∗

=argmin
X

1

2
∥Y −X∥2F + τ

3∑
i=1

αi∥X(i)∥∗, (4.2)
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where the second equation holds by letting X = Z ◦ (P(k))−1, and the third equation holds

by the property of P(k) and Property 4.3.

4.2.2 SPI of Tensor Nuclear Norm

In this part, we study the SPI of the tensor nuclear norm. And we have the following

conclusions. Please refer to the supplementary material of this paper for the detailed proof

of these conclusions.

Property 4.4. (Horizontal SPI of tensor nuclear norm) Tensor nuclear norm satisfies HSPI

(Horizontal SPI), i.e.∥A∥∗ = ∥A ◦ P(1)∥∗, for any horizontal slice permutations P(1).

Proof. By the definition of bcirc(A), exist two permutation matrices P and Q such

that bcirc(A ◦ P(1)) = P · bcirc(A) · Q. Therefore, ∥A ◦ P(1)∥∗ = ∥A ◦ P(1)∥a,∗ =

1
I3
∥bcirc(A ◦P(1))∥∗ = 1

I3
∥P · bcirc(A) ·Q∥∗. By Property 4.2, 1

I3
∥P · bcirc(A) ·Q∥∗ =

1
I3
∥bcirc(A)∥∗ = ∥A∥a,∗ = ∥A∥∗. Thus ∥A ◦ P(1)∥∗ = ∥A∥∗.

Property 4.5. (Lateral SPI of tensor nuclear norm) tensor nuclear norm satisfies LSPI

(Lateral SPI), i.e.∥A∥∗ = ∥A ◦ P(2)∥∗, for any lateral slices permutations P(2).

Proof. Similar to the proof of Property 4.4.

Property 4.6. For same circle C1 = {i1, i2, ..., iI3 , i1} and C2 = {ik, ik+1, ..., iI3 , ..., ik−1, ik},

∥AO⃗1∥∗ = ∥AO⃗2∥∗,

where O⃗1 = {i1, i2, ..., iI3} is obtained by C1, and O⃗2 = {ik, ik+1, ..., iI3 , ..., ik−1} is

obtained by C2.
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Proof.

bcirc(AO⃗1

) =



[A]:,:,i1 [A]:,:,iI3
· · · [A]:,:,i3 [A]:,:,i2

[A]:,:,i2 [A]:,:,i1 · · · [A]:,:,i4 [A]:,:,i3
...

... . . . ...
...

[A]:,:,iI3−1
[A]:,:,iI3−2

· · · [A]:,:,i1 [A]:,:,iI3

[A]:,:,iI3
[A]:,:,iI3−1

· · · [A]:,:,i2 [A]:,:,i1



−→



[A]:,:,ik [A]:,:,ik−1
· · · [A]:,:,ik+2

[A]:,:,ik+1

[A]:,:,ik+1
[A]:,:,ik · · · [A]:,:,ik+3

[A]:,:,ik+2

...
... . . . ...

...

[A]:,:,ik−2
[A]:,:,ik−3

· · · [A]:,:,ik [A]:,:,ik−1

[A]:,:,ik−1
[A]:,:,ik−2

· · · [A]:,:,ik+1
[A]:,:,ik


= bcirc(AO⃗2

). (4.3)

Therefore ∥AO⃗1∥∗ = ∥AO⃗1∥a,∗ = 1
I3
∥bcirc(AO⃗1

)∥∗ = 1
I3
∥bcirc(AO⃗2

)∥∗ = ∥AO⃗2∥a,∗ =

∥AO⃗2∥∗.

The symbols and definitions used in Property 4.6 are explained in Definitions 4.2-4.3.

Theorem 4.3. For same circle C1 = {i1, i2, ..., iI3 , i1} and C2 = {ik, ik+1, ..., iI3 , ..., ik−1, ik},

D(Y ◦ P(3)

O⃗1
, τ) ◦ P(3)−1

O⃗1
= D(Y ◦ P(3)

O⃗2
, τ) ◦ P(3)−1

O⃗2
(4.4)

where D(A, τ) = argminX
1
2
∥A − X∥2F + τ∥X∥∗, O⃗1 = {i1, i2, ..., iI3} is obtained by

C1, and O⃗2 = {ik, ik+1, ..., iI3 , ..., ik−1} is obtained by C2.

80



Proof.

(argmin
Z

1

2
∥Y ◦ P(3)

O⃗1
−Z∥2F + τ∥Z∥∗) ◦ P(3)−1

O⃗1

=argmin
X

1

2
∥Y ◦ P(3)

O⃗1
−X ◦ P(3)

O⃗1
∥2F + τ∥X ◦ P(3)

O⃗1
∥∗

=argmin
X

1

2
∥Y −X∥2F + τ∥X ◦ P(3)

O⃗1
∥∗,

where the first equation holds by letting X = Z ◦ (P(3)

O⃗1
)−1.

By Property 4.6, ∥X ◦ P(3)

O⃗1
∥∗ = ∥X ◦ P(3)

O⃗2
∥∗. Therefore,

argmin
X

1

2
∥Y −X∥2F + τ∥X ◦ P(3)

O⃗1
∥∗

=argmin
X

1

2
∥Y −X∥2F + τ∥X ◦ P(3)

O⃗2
∥∗

=argmin
X

1

2
∥Y ◦ P(3)

O⃗2
−X ◦ P(3)

O⃗2
∥2F + τ∥X ◦ P(3)

O⃗2
∥∗

=(argmin
Z

1

2
∥Y ◦ P(3)

O⃗2
−Z∥2F + τ∥Z∥∗) ◦ P(3)−1

O⃗2
,

where the third equation holds by letting Z = X ◦ (P(3)

O⃗2
). The conclusion holds.

Property 4.7. For A ∈ RI1×I2×I3 , if I3 ≤ 3, then tensor nuclear norm satisfies frontal slice

permutations invariance (FSPI), i.e.∥A∥∗ = ∥A ◦ P(3)

O⃗
∥∗ for any frontal slice permutations

P(3)

O⃗
.

Proof. For I3 = 2, let [B]:,:,1 = [A]:,:,2 and [B]:,:,2 = [A]:,:,1. Thus bcirc(B) =

 [B]:,:,1 [B]:,:,2

[B]:,:,2 [B]:,:,1

 =

 [A]:,:,2 [A]:,:,1

[A]:,:,1 [A]:,:,2

 −→
 [A]:,:,1 [A]:,:,2

[A]:,:,2 [A]:,:,1

 = bcirc(A). Therefore, ∥A∥∗ = ∥A∥∗,a =

∥B∥∗,a = ∥B∥∗.

For I3 = 3, there is only one circle. Therefore, ∥A∥∗ = ∥A ◦ P(3)

O⃗
∥∗ by Property 4.6.
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Thus, the conclusion holds.

Theorem 4.4. For Y ∈ RI1×I2×I3 , if I3 ≤ 3, then

D(Y , τ) = D(Y ◦ P(k), τ) ◦ P(k)−1

(4.5)

for k = 1, 2, 3.

Proof.

D(Y ◦ P(k), τ) ◦ (P(k))−1 =(argmin
Z

1

2
∥Y ◦ P(k) −Z∥2F + τ∥Z∥∗) ◦ (P(k))−1

=argmin
X

1

2
∥Y ◦ P(k) −X ◦ P(k)∥2F + τ∥X ◦ P(k)∥∗

=argmin
X

1

2
∥Y −X∥2F + τ∥X∥∗, (4.6)

where the second equation holds by letting X = Z ◦ (P(k))−1, and the third equation holds

by the property of P(k) and Property 4.4, 4.2.2 and 4.7.

Although, for I3 > 3, we have taken an example that contradicts the SPI of tensor

recovery based on the tensor-tensor product (see Fig. 4.1). By Theorem 4.4, it can be seen

that tensor nuclear norm-based tensor recovery satisfies slice permutations invariance for

I3 ≤ 3.

4.3 The Proposed Method for SPV

In the following, we consider the case of I3 > 3.
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4.3.1 Tensor Principal Component Analysis for SPV

Consider the following key problem:

min
X ,O⃗

1

2
∥YO⃗ −X∥2F + τ∥X∥∗. (4.7)

Since ∥X∥∗ = ∥X∥∗,a [50], therefore (4.7) can be converted to

min
X ,O⃗

1

2
∥YO⃗ −X∥2F + τ∥X∥∗,a

=min
X ,O⃗

1

2I3
∥bcirc(YO⃗)− bcirc(X )∥2F +

τ

I3
∥bcirc(X )∥∗. (4.8)

From

bcirc(YO⃗) =



[Y ]:,:,O⃗(1) [Y ]:,:,O⃗(I3)
· · · [Y ]:,:,O⃗(2)

[Y ]:,:,O⃗(2) [Y ]:,:,O⃗(1) · · · [Y ]:,:,O⃗(3)

...
... . . . ...

[Y ]:,:,O⃗(I3)
[Y ]:,:,O⃗(I3−1) · · · [Y ]:,:,O⃗(1)



−→



[Y ]:,:,O⃗(1) [Y ]:,:,O⃗(2) · · · [Y ]:,:,O⃗(I3)

[Y ]:,:,O⃗(2) [Y ]:,:,O⃗(3) · · · [Y ]:,:,O⃗(1)

...
... . . . ...

[Y ]:,:,O⃗(I3)
[Y ]:,:,O⃗(1) · · · [Y ]:,:,O⃗(I3−1)


,

it can be seen that bcirc(YO⃗) will be approximated to a lower rank matrix and get a better

low-rank eastimation of Y when adjacent [Y ]:,:,O⃗(i) and [Y ]:,:,O⃗(i+1) are more similar (mark

[Y ]:,:,O⃗(I3+1) = [Y ]:,:,O⃗(1) for convenience). Therefore, we convert (4.7) to the following

problem:

argmin
X

1

2
∥YO⃗∗ −X∥2F + τ∥X∥∗, (4.9)
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where O⃗∗ is obtained by C∗(Y). Therefore we solve (4.7) via Algorithm 4.1 approximately

by Theorem 2.11. The symbols and definitions used in Algorithm 4.1 are explained in

Definitions 4.4-4.5.

Definition 4.4. Let A ∈ RI1×I2×I3 , C = {i1, i2, ..., iI3 , i1} is a circle on A which composed

of 1, 2, 3,..., I3. We call C(is, it) = {is, is+1, ..., it} as a walk from is to it on C, and

C−1(is, it) = {it, it−1, ..., is} as inverse of walk C(is, it). Assume C(i1, il) = {i1, i2, ..., il}

and C(il, il+k) = {il, il+1, ..., il+k} are two walks on circle C, mark C(i1, il)
⋃
C(il, il+k) =

{i1, i2, ..., il, il+1, ..., il+k}.

Definition 4.5. Let C = {i1, i2, ..., iI3 , i1} is a circle on A ∈ RI1×I2×I3 which com-

posed of 1, 2, 3,..., I3., and W (A) is a weight matrix in which wi,j(A) = ∥ [A]:,:,i −

[A]:,:,j ∥F is weight of [A]:,:,i and [A]:,:,j for i ̸= j, and wi,j(A) = ∞ for i = j. Mark

w(A,C) =
∑I3−1

k=1 wik,ik+1
(A) + wiI3 ,i1

(A), C∗(A) = argminC w(A,C) and c∗(A) =

minC w(A,C).

A key point to DSPV(Y , τ) is to find C∗(Y). And a simplest idea for getting C∗(Y) is

that, when we get C(k−1), we can make appropriate modifications for the circle C(k) to get

another circle C(k) with a smaller w(Y ,C(k)) as Fig. 4.2 [4]. Repeat the above process until

C(k) convergence to C∗(Y).

4.3.2 Tensor Robust Principal Component Analysis for SPV

Consider the following problem:

(L̂, Ŝ, O⃗∗) = min
L,S,O⃗

∥L∥∗ + λ∥S∥1 s.t.(P − S)O⃗ = L, (4.10)

1 It is worth noting that we convert (4.7) to a minimum Hamiltonian circle problem.
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Figure 4.2: Obtaining C∗(Y) by solving a minimum Hamiltonian circle problem.

where L is low-rank, and S is sparse. And Algorithm 4.2 based on alternating direction

method (ADM) [3] is proposed for solving (4.10). It is worth noting that, for fixed O⃗, (4.10)

degenerate to TRPCA (which means (4.10) can exactly recover the low-rank and sparse

components from their sum for the fixed O⃗.).

4.4 Experiments

This section includes three parts: in the first two parts, we compare the proposed algorithm

(TRPCA-SPV) with several existing state-of-the-art tensor recovery methods (including

RPCA2[8], SNN3[25], Liu’s work 3(called Liu for short)[9] and TRPCA3 [50]) on image

sequence recovery task and image classification task to evaluate the effectiveness of the

algorithms to alleviate SPV problem on tensor recovery. And the third part is conducted in

order to evaluate the performance of TRPCA-SPV with different values of the parameter κ.

2 https://github.com/dlaptev/RobustPCA
3 https://github.com/canyilu/LibADMM-toolbox
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4.4.1 Image Sequence Recovery

In this part, all five methods are tested on two hyperspectral image databases including Pavia

University 4 and Botswana4.

Each image with a dimension of I1 × I2 is contaminated by the mixture of zero mean

Gaussian noise and random valued impulse noise, in which standard deviations of zero-mean

Gaussian δ is set as δ = 5 : 10 : 25 and random-valued impulse noise with density level c

is set as c = 0.05 : 0.1 : 0.25. For Pavia University, we empirically set λ =
1√

max(I1, I2)

for RPCA (which deals with each band separately), λ = [240
3
, 240

3
, 240

3
] for SNN, and

λ = 330 × [0.2, 0.1, 0.7] for Liu. For Botswana, we empirically set λ =
0.9√

max(I1, I2)

for RPCA (which deals with each band separately), λ = [340
3
, 340

3
, 340

3
] for SNN, and

λ = 370× [0.3, 0.1, 0.6] for Liu.

For TRPCA, the parameter λ is tuned to λ =
0.9√

max(I1, I2)I3
and λ =

0.8√
max(I1, I2)I3

for Pavia University and Botswana respectively, in which I3 is the number of spectral bands.

For TRPCA-SPV, the parameter λ is tuned to λ =
0.9√

max(I1, I2)I3
for the two databases.

The Mean Peak Signal-To-Noise Ratio (MPSNR) value 1
I3

∑I3
i=1 PSNRi is used to

evaluate the methods, where PSNRi is the Peak Signal-To-Noise Ratio (PSNR) result of

i-th restored band. From Table 4.1, there are some observations as follows: TRPCA-SPV

outperforms the compared methods by a wide margin in most of cases. Specifically, for Pavia

University, TRPCA-SPV outperforms other methods by more than 3 dB on the case of small

noise levels. This demonstrates the superiority of our TRPCA-SPV in tensor recovery. For

the case of TRPCA-SPV v.s. TRPCA, TRPCA-SPV can attain much better results compared

4 http://www.ehu.eus/ccwintco/index.php/

Hyperspectral_Remote_Sensin_Scenes

86



0 0.05 0.1 0.15 0.2 0.25 0.3

30

25

20

15

10

5

0

c

0.75

0.80

0.66

0.76

0.80

0.49

0.59

0.66

0.73

0.37

0.46

0.53

0.58

0.60

0.65

0.70

0.85

0.93

0.87

0.90

0.91

0.94

0.91

0.85

0.89

0.92

0.89

0.92

0.90

0.90

0.82

0.84

0.88

0.92

0.92

0.92

0.93

0.86

0.86

0.91

0.94

0.90

0.86

0.92

0.92

0.91

0.82

0.84

0.85

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3

30

25

20

15

10

5

0

c

0.81 0.80

0.84

0.77

0.82

0.75

0.82

0.71

0.79

0.84

0.86

0.65

0.72

0.82

0.61

0.67

0.78

0.82

0.87

0.90

0.88

0.90

0.91

0.93

0.89

0.92

0.89

0.91

0.90

0.88

0.89

0.93

0.89

0.92

0.86

0.88

0.91

0.92

0.93

0.90

0.89

0.91

0.87

0.89

0.90

0.90

0.87

0.89

0.90

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3

30

25

20

15

10

5

0

c

0.67

0.75

0.81

0.82

0.58

0.71

0.80

0.57

0.71

0.78

0.83

0.57

0.64

0.72

0.79

0.55

0.69

0.80

0.48

0.59

0.75

0.83

0.48

0.65

0.79

0.83

0.88

0.93

0.93

0.90

0.87

0.92

0.89

0.91

0.86

0.90

0.88

0.90

0.91

0.40

0.89

0.88

0.93

0.36

0.89

0.89

0.31

0.38

0.89

(c)

0 0.05 0.1 0.15 0.2 0.25 0.3

30

25

20

15

10

5

0

c

0.85 0.80 0.76

0.82

0.67

0.72

0.82

0.86

0.58

0.73

0.78

0.81

0.53

0.60

0.67

0.73

0.83

0.84

0.81

0.86

0.88

0.90

0.91

0.92

0.89

0.92

0.87

0.88

0.92

0.93

0.91

0.91

0.87

0.88

0.88

0.91

0.91

0.92

0.88

0.91

0.90

0.92

0.91

0.89

0.91

0.89

0.86

0.89

0.89

(d)

0 0.05 0.1 0.15 0.2 0.25 0.3

30

25

20

15

10

5

0

c

0.82 0.80 0.72

0.86

0.69

0.73

0.82

0.57

0.64

0.74

0.77

0.86

0.91

0.90

0.92

0.92

0.94

0.93

0.88

0.88

0.93

0.90

0.90

0.91

0.90

0.89

0.92

0.95

0.92

0.93

0.92

0.86

0.91

0.91

0.91

0.91

0.90

0.87

0.91

0.91

0.92

0.90

0.89

0.91

0.89

0.93

0.87

0.87

0.89

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

Figure 4.3: Classification accuracies of the 5 algorithms on ORL database: (a) RPCA (b)

SNN (c) Liu (d) TRPCA (e) TRPCA-SPV

to TRPCA. The gap between MPSNR results by TRPCA-SPV and TRPCA even achieves

5dB in the case of δ = 5 and c = 0.05 : 0.1 : 0.25. This illustrates the huge affecting of

SPV on TRPCA, and TRPCA-SPV can eliminate it well.

4.4.2 Image Classification

In this part, image classification is conducted on two datasets including ORL database5 and

CMU PIE database 6.

Each image with the size of I1× I2 is contaminated by the mixed noise, in which δ is set

as δ = 0 : 5 : 30 and c is set as c = 0 : 0.05 : 0.3. For each noise level, all five algorithms are

used to recover the low-rank tensor structure from the noised images. The performance of

the algorithms is evaluated by classification accuracy via k nearest neighbor (kNN), where

k = 1 in the experiments. For each dataset, 90% of samples are randomly selected as the

training set, and the rest are taken as the testing set. The experiments are repeated 10 times,

and the average values of the accuracy of all methods are reported in Fig. 4.3-4.4. For RPCA

5 https://cam-orl.co.uk/facedatabase.html
6 https://www.ri.cmu.edu/project/pie-database/
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Figure 4.4: Classification accuracy result on CMU PIE database: (a) RPCA (b) SNN (c) Liu

(d) TRPCA (e) TRPCA-SPV

and TRPCA, the parameter λ is set to λ = 1/
√

max(I1I2, I3) and λ = 1/
√

max(I1, I2)I3

respectively as suggested in [50], in which I3 is the number of samples. For TRPCA-SPV,

the parameter λ is set to λ = 1/
√

max(I1, I2)I3 as well. For Liu, we find that it does not

perform well when λi’s are set to the values suggested in theory [34]. We empirically set it

as 70× [0.2, 0.3, 0.5]. For SNN, we empirically set λ = [70
3
, 70

3
, 70

3
]. All results are presented

in Fig. 4.3-4.4. The cell with more dark red corresponds to higher classification accuracy.

From Fig. 4.3-4.4, there are some observations as follows: In general, TRPCA-SPV

achieves more stable and better performance compared to other methods (RPCA, SNN,

Liu, and TRPCA). In addition, TRPCA-SPV can attain better results compared to TRPCA,

because TRPCA-SPV exploits the low-rank structure within the tensor data more exactly.

4.4.3 Sensitivity Analysis of Parameters

In this part, an experiment is conducted with two datasets (including ORL database and

Pavia University), in which each image in datasets contaminated by the mixed noise with

δ = 15 and c = 0.15, to investigate the influence of the parameter κ.
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Figure 4.5: Sensitivity analysis of parameter κ for TRPCA-SPV on (a) ORL database and

(b) Pavia University; Convergence analysis for TRPCA-SPV with different κ on (c) ORL

database and (d) Pavia University.

The experiments for each parameter κ are repeated 10 times, and the results obtained by

the different methods are shown in Fig. 4.5 (a) and (b), from which we have the following

observations: (1) In general, the results by TRPCA-SPV are robust against to the parameter κ.

(2) For all cases of TRPCA-SPV, the results by TRPCA-SPV are much better than TRPCA.

In addition, from Fig. 4.5 (c) and (d), the curve by TRPCA-SPV is shocked depending

on the parameter κ at the beginning and tends to stable with more iterations of the algorithm,

in which

Error = max(∥L(k+1) −L(k)∥∞, ∥S(k+1) − S(k)∥∞, ∥L(k+1) + (S(k+1))O⃗
∗ −PO⃗∗∥∞).

(4.11)

4.5 Summary

This chapter focuses on solving a new problem (SPV in tensor recovery) that has not been

explored so far. We aim to accurately recover a low-rank tensor from a high-dimensional
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tensor data with chaos tensor slices sequence. The example given in Figure 1 shows a huge

gap between results by tensor recovery using tensors with different slices sequence. To deal

with this issue, TRSPV is proposed. Furthermore, we discuss the SPV of several key tensor

recovery problems theoretically. To this end, we first study the row (or column) permutation

invariance of a key low-rank matrix recovery problem (Principal Component Analysis).

Then, the SPI of several key tensor recovery problems are discussed theoretically, and we

get the following results: (1) Tensor recovery based on the weighted sum of the nuclear

norm of the unfolding matrices has SPI. (2) For I3 ≤ 3, DFT-based tensor recovery has

SPI. For the case of I3 > 3, experimental results show the effectiveness of the proposed

algorithm and eliminate SPV in DFT-based tensor recovery well.
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Algorithm 4.1: Tensor recovery for SPV (TRSPV)
Input: Y ∈ RI1×I2×I3 , and Iternum.

Output: C∗(Y) and DSPV(Y , τ)

Compute weight matrix W ;

Initialize circle C(0) = {i(0)1 , i
(0)
2 , ..., i

(0)
I3
, i

(0)
1 }, and k = 0;

while k ≤ Iternum do

k = k + 1;

if there are different i(k−1)
s ,i(k−1)

t ,i(k−1)
s + 1,i(k−1)

t + 1 in C(k−1) which make

w
i
(k−1)
s ,i

(k−1)
t

(Y) + w
i
(k−1)
s +1,i

(k−1)
t +1

(Y) <

w
i
(k−1)
s ,i

(k−1)
s +1

(Y) + w
i
(k−1)
t ,i

(k−1)
t +1

(Y) then

C(k) = {i(k−1)
t , i

(k−1)
s }

⋃
C(k−1)−1

(i
(k−1)
t+1 , i

(k−1)
s )

⋃
{i(k−1)

t+1 , i
(k−1)
s+1 }⋃

C(k−1)(i
(k−1)
s+1 , i

(k−1)
t );

else

C(k) = C(k−1);

break;

end

end

Obtain C∗(Y) = C(k), and compute DSPV(Y , τ) = D(YO⃗∗
, τ), where O⃗∗ obtained

by C∗(Y);
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Algorithm 4.2: TRPCA for SPV (TRPCA-SPV)

Initialize: L(0) = S(0) = Q(0) = Y (0) = 0, ρ > 1, µ0 = 1e− 3, ϵ = 1e− 8, κ > 0.

while not converged do
1. Update O⃗∗ by

If κ = 1 or k mod κ = 1, update O⃗∗ by C∗(M(k)), where

M(k) = P − S(k) − Q(k)

µk
;

2.Update L(k+1) by L(k+1) = argminL ∥L∥∗ + µk

2
∥L− (M(k))O⃗

∗∥2F ;

3. Update S(k+1) by

S(k+1) = argminS λ∥SO⃗∗∥1 + µk

2
∥L(k+1) + SO⃗∗ −PO⃗∗

+ (Q
(k)

µk
)O⃗

∗∥2F ;

4.(Q(k+1))O⃗
∗=(Q(k))O⃗

∗
+ µ(L(k+1) + (S(k+1))O⃗

∗ −PO⃗∗
);

5.Update µk+1 by µk+1 = min(ρµk, µmax);

6. Check the convergence conditions

∥L(k+1) −L(k)∥∞ ≤ ϵ, ∥(S(k+1))O⃗
∗ − (S(k))O⃗

∗∥∞ ≤ ϵ,

∥L(k+1) + (S(k+1))O⃗
∗ −PO⃗∗∥∞ ≤ ϵ;

end

Botswana Pavia University

δ c RPCA SNN Liu TRPCA TRPCA-SPV RPCA SNN Liu TRPCA TRPCA-SPV

5

5% 29.90 34.52 36.82 32.06 38.44 27.56 29.82 32.03 30.65 36.60

15% 29.04 33.02 35.34 30.06 37.11 26.90 29.21 31.60 28.07 35.39

25% 27.73 30.81 32.92 28.78 34.98 25.55 27.96 30.53 26.03 33.48

15

5% 28.11 30.91 32.42 31.11 34.21 25.58 27.19 28.07 30.22 31.51

15% 27.32 29.47 30.92 28.99 32.34 24.77 26.43 28.35 27.17 30.38

25% 25.78 27.23 28.48 27.18 29.67 23.20 24.96 26.99 24.67 27.76

25

5% 26.84 29.17 30.37 29.34 31.65 23.63 25.12 26.94 28.50 29.02

15% 26.05 27.55 28.67 26.83 29.77 22.74 24.30 26.30 25.21 27.49

25% 24.29 25.14 26.06 24.18 26.79 21.11 22.76 24.77 22.49 24.81

Table 4.1: MPSNR results by different methods on Botswana and Pavia University.

92



Chapter 5

Handling Slice Permutations Variability

in t-Product-Based Tensor Recovery

5.1 Introduction

In the previous chapter, we discussed that Discrete Fourier Transform (DFT)-based tensor

recovery exhibits frontal Slice Permutations Variability (SPV), meaning that rearranging the

order of frontal slices in a tensor significantly affects the effectiveness of tensor recovery.

We believe that the root cause of SPV in tensor tubal rank-based recovery methods lies in

the definition of the t-product. To investigate the SPV in t-product-based tensor recovery

methods, including Tensor Principal Component Analysis (TPCA) and Tensor Factorization

(TF), for best κ-tensor rank estimating, we conducted experiments using seven gray videos1:

bridge-far, grandma, akiyo, bridge-close, templet, bus, and mobile. For each video, we
1 http://trace.eas.asu.edu/yuv/
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used only the first 50 frames. These videos were chosen to test the influence of frontal

slice permutations on a series of t-product-based methods, including DFT-based methods,

Discrete Cosine Transform (DCT)-based methods, and Random Orthogonal Matrix (ROM)-

based methods. In Figure 5.1, we illustrate the relationship between SPV and the transforms

used, as well as the variation in frontal slices of the data tensor. More specifically, we

have the following two observations. (1) The impact of SPV on ROM-based methods, in

terms of mean Peak Signal-to-Noise Ratio (PSNR) results, is relatively mild compared to

DFT- and DCT-based methods. This suggests that the severity of SPV in t-product-based

methods depends on the specific transform employed. For the video sequence mobile, the

SPV-induced gap in PSNR reaches up to 1.9 dB. This is because both DFT and DCT

represent the frequency domain. Each frontal slice obtained through DFT or DCT applied

to the tensor tubes corresponds to coefficients at different frequencies. As a result, SPV

becomes more pronounced in DFT-based and DCT-based methods when dealing with video

sequences exhibiting higher std-mean values (the mean of standard deviations of each tube

in the data tensor).

In the previous chapter, we explored a method to find an optimal tensor frontal slice

permutation that results in a tensor with similar adjacent frontal slices, leading to a lower

average rank tensor. However, this method has certain limitations:

(1) Solving a Minimum Hamiltonian Cycle problem to find the optimal cycle is NP-

hard, making it challenging to obtain the optimal solution. Additionally, even slight

disturbances in the slice sequence order can lead to worse tensor recovery results, as

observed in Figure 5.2(b).

(2) The example presented in Figure 5.2(a) demonstrates that a tensor with a smaller
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Figure 5.1: The differences in mean PSNR (Peak Signal to Noise Ratio) results, i.e., dROM,

dDFT, and dDCT, by performing random frontal slice permutation on the data tensor for

DFT-based methods, DCT-based methods, and ROM-based methods are presented as the

bars. The std-mean results presented as the black line are the mean of standard deviations of

each tube in the data tensor.
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Figure 5.2: Left Y Axis: the PSNR results of the best κ = 50-rank approximation by

different SVD-based TPCA when the observation tensor suffers various permutations. Right

Y Axis: the weight of the cycle that corresponds to the Euclidean distance of adjacent frontal

slices.
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weight does not necessarily have a lower DCT-based rank. This finding emphasizes

that the method proposed in [100] is not suitable for DCT-based methods, as indicated

by the results obtained.

As a result, there is a need to develop an effective general solver that can effectively handle

SPV in t-product-based tensor recovery across various transform methods.

In this chapter, we introduce a generalized framework to address the issue of Slice

Permutations Variability (SPV) in t-product-based tensor recovery methods. The framework

revolves around finding a unitary matrix U that enables the tensor A×3 U to be approx-

imated by a tensor with a lower rank. By tackling SPV and presenting this generalized

solution, our work aims to enhance the robustness and effectiveness of t-product-based

tensor recovery methods across various transform methods.

5.2 Proposed Framework for Handling SPV in Tensor Re-

covery

5.2.1 Formulation of Proposed Framework

Let us consider the following constrained problems:

min
X ,E
F(E ,X ,Y − E) s.t. Gk(E ,X ,Y − E) ≤ 0(k = 1, 2, · · · , n), (5.2)

where Gk(E ,X ,Y − E) ≤ 0 represents that each element of Gk(E ,X ,Y − E) is less or

equal than 0, and Y∈ RI1×I2×I3 , X∈ RI1×I2×I3 , and E∈ RI1×I2×I3 represent the observation

tensor, low rank estimation of Y , and noise in the observation tensor, respectively.
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Algorithm 5.1: BCD for solving the proposed t-SVD-based model (5.7).
Input: Y ∈ RI1×I2×I3 , k, ε > 0.

Output: X .

while not converged do

1. Compute X (t+1) by X (t+1) = argminX
1
2
∥UY (3) −X (3)∥2F + λ∥X∥3,L;

2. Compute U (t+1) by U (t+1) = argminU
1
2
∥UY (3) −X (3)∥2F s.t. I = UTU ;

3. Check the convergence condition: ∥X (t+1) −X (t)∥∞ < ε,

∥U (t+1) − P (t)∥∞ < ε;

4. t = t+ 1.

end while

The most straightforward approach to finding a good frontal slice order for Y − E is

by seeking a permutation matrix P such that (Y − E) ×3 P can be approximated by a

lower-rank tensor. To achieve this, we aim to minimize F(E ,X , (Y − E)×3 P ) for E ,X ,

while satisfying Gk(E ,X , (Y − E) ×3 P ) ≤ 0(k = 1, 2, · · · , n). Thus, we consider the

following problem:

min
X ,E,P

F(E ,X , (Y − E)×3 P ) s.t. Gk(E ,X , (Y − E)×3 P ) ≤ 0(k = 1, 2, · · · , n).

(5.3)

Here, P is a permutation matrix satisfying P TP = PP T = I . To simplify the problem,

we do not strictly require that P is a permutation matrix, but it should still satisfy P TP =

PP T = I . Therefore, we introduce a unitary matrix U , and consider the following problem
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Algorithm 5.2: BCD for solving the proposed Tensor Factorization model (5.10).
Input: Y ∈ RI1×I2×I3 , κ, ε > 0.

Output: A and B.

while not converged do

1. Compute A(t+1) by A(t+1) = argminA
1
2
∥Y ×3 U

(t) −A ∗B(t)∥2F ;

2. Compute B(t+1) by B(t+1) = argminB
1
2
∥Y ×3 U

(t) −A(t+1) ∗B∥2F ;

3. Compute U (t+1) by

U (t+1) = argmin
U

1

2
∥UY (3) − [A(t+1) ∗B(t+1)](3)∥2F s.t. I = UTU ; (5.1)

4. Check the convergence condition: ∥A(t+1) −A(t)∥∞ < ε, ∥B(t+1) −B(t)∥∞ < ε,

∥U (t+1) −U (t)∥∞ < ε;

5. t = t+ 1.

end while

instead:

min
X ,E,U

F(E ,X , (Y − E)×3 U)

s.t. Gk(E ,X , (Y − E)×3 U) ≤ 0(k = 1, 2, · · · , n), I = UTU . (5.4)

By solving (5.4), we obtain the low-rank estimation of Y , i.e., X̂ ×3 Û
T

, where (X̂ , Ê , Û)

represents the optimal solution of (5.4).

Therefore, using the framework presented in (5.4), we can address the SPV in Tensor

Robust Principal Component Analysis (TRPCA) as follows:

min
X ,E,U

∥E∥1 + τ∥X∥∗,L s.t. Y ×3 U = X + E ×3 U , I = UTU , (5.5)

where ∥X∥∗,L denotes a regularization term calculated as
∑I3

i=1
1
I3
∥[L(X )]:,:,i∥∗, and L can
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be any invertible transforms, either real or complex.

5.2.2 The Proposed Framework for Learning t-Product-Based Rank

and t-Product

Here, we use TPCA as an example to illustrate our framework for learning the t-product and

t-product-based rank. The TPCA model can be formulated as follows:

argmin
X
∥Y −X∥2F s.t. ∥X∥3,L ≤ κ. (5.6)

In this formulation, ∥X∥3,L represents the tensor rank of X , which is defined as the non-zero

tubes of L(S) obtained by performing frontal slices-wise Singular Value Decomposition

(SVD) on L(X ). This can be expressed as [L(X )]:,:,i = [L(U)]:,:,i[L(S)]:,:,i[L(V)]T:,:,i

for i = 1, 2, · · · , I3. Using the framework presented in (5.4), we obtain the following

SVD-based TPCA model:

(X̂ , Û) = argmin
X ,U
∥Y ×3 U −X∥2F s.t. ∥X∥3,L ≤ κ, I = UTU . (5.7)

To solve (5.7), a Block Coordinate Descent (BCD)-based optimization algorithm (Algorithm

5.1) can be used, which involves performing SVD. Let Z be Z = X ×3 U
T , we can

reformulate the problem as follows:

(Ẑ, Û) = argmin
Z,U
∥Y −Z∥2F s.t. ∥Z∥3,LU ≤ κ, I = UTU . (5.8)

Furthermore, we can observe that X̂ ×3 Û
T
= Ẑ . Thus, solving (5.7) is equivalent to

learning an appropriate transform LU and tensor norm ∥ · ∥3,LU for better exploiting the

low-rank property in the observation tensor.
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The definition of the t-product is closely related to the transform, leading to a sim-

ilar conclusion for the t-product. Let us consider the tensor factorization-based TPCA

(TFTPCA):

min
A,B

1

2
∥Y −A ∗L B∥2F , (5.9)

where A ∈ RI1×κ×I3 and B ∈ Rκ×I2×I3 for given κ. Using the proposed framework, we can

formulate the following model:

(Â, B̂, Û) = arg min
A,B,U

1

2
∥Y ×3 U −A ∗L B∥2F s.t. I = UTU , (5.10)

which can be solved by Algorithm 5.2. Consequently, we obtain an approximate tensor

factorization of Y given by

(Â ∗L B̂)×3 Û
T
= (LÛ)−1(L(Â)⊙f L(B̂)) = Û

T
(Â) ∗LÛ Û

T
(B̂), (5.11)

and the (Û
T
(Â), Û

T
(B̂), Û) is the optimal solution of (5.12) as well.

min
C,D,U

1

2
∥Y − C ∗LU D∥2F s.t. I = UTU (5.12)

5.2.3 Optimization

In this part, we are going to solve the proposed TRPCA model (5.5) by using ADMM, where

µ is a positive scalar, and Λ is Lagrange multiplier tensor. According to the framework

of ADMM, the above optimization problem can be iteratively solved by minimizing the

Lagrangian function of (5.5), i.e., the function (5.13), as follows.

Lµ(X ,E ,U ,Λ) =∥X∥∗,L + λ∥E∥1 + ⟨UE (3) +X (3) −UY (3),Λ⟩

+
µ

2
∥UE (3) +X (3) −UY (3)∥2F , (5.13)
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Step 1 Update X (t+1) by

X (t+1) =argmin
X
Lµ(X ,E (t),P (t),Λ(t))

= argmin
X
∥X∥∗,L + ⟨U (t)E (t)

(3) +X (3) −U (t)Y (3),Λ
(t)⟩

+
µ

2
∥U (t)E (t)

(3) +X (3) −U (t)Y (3)∥2F

=argmin
X
∥X∥∗,L +

µ

2
∥U (t)E (t)

(3) +X (3) −U (t)Y (3) +
1

µ
Λ(t)∥2F (5.14)

Step 2 Calculate E (t+1) by

E (t+1) =argmin
E
Lµ(X (t+1),E ,U (t),Λ(t))

= argmin
E

λ∥E∥1 +
µ

2
∥U (t)E (3) +X (t+1)

(3) −U (t)Y (3) +
1

µ
Λ(t)∥2F (5.15)

Step 3 Calculate U (t+1) by

U (t+1) =argmin
U
Lµ(X (t+1),E (t+1),U ,Λ(t)) s.t. I = UTU

=argmin
U

µ

2
∥UE (t+1)

(3) +X (t+1)
(3) −UY (3) +

1

µ
Λ(t)∥2F s.t. I = UTU (5.16)

Let (X (t+1)
(3) +

1

µ
Λ(t))(Y (3)−E (t+1)

(3) )T = U sΣsV
T
s be the SVD of (X (t+1)

(3) +
1

µ
Λ(t))(Y (3)−

E (t+1)
(3) )T . The optimal solution of (5.16) can be given by U (t+1) = U sV

T
s [104].

Step 4 Calculate Λ(t+1) by

Λ(t+1) = Λ(t) + µ(t)(U (t+1)E (t+1)
(3) +X (t+1)

(3) −U (t+1)Y (3)). (5.17)

Step 5 Update µ(t+1) by

µ(t+1) = min(ρµ(t), µ̄), (5.18)

where ρ > 1 and µ̄ is upper bound of µ(t+1).
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Algorithm 5.3: ADMM for solving the proposed TRPCA model (5.5).
Input: Y ∈ RI1×I2×I3 , ε > 0.

Output: A and B.

while not converged do

1. Compute X (t+1) by (5.14);

2. Compute E (t+1) by (5.15);

3. Compute U (t+1) by (5.16);

4. Calculate Λ(t+1) by (5.17);

5. Update µ(t+1) by (5.18);

6. Check the convergence condition: ∥X (t+1) −X (t)∥∞ < ε, ∥E (t+1) − E (t)∥∞ < ε,

∥U (t+1) −U (t)∥∞ < ε, ∥X (t+1) + E (t+1) −Y ×3 U
(t+1)∥∞ < ε;

7. t = t+ 1.

end while

5.3 Experimental Results

In this section, we conducted two kinds of experiments to evaluate the effectiveness of the

proposed methods in tensor recovery applications, specifically video reconstruction and

image sequence recovery. To demonstrate the capability of our methods in mitigating the

performance degradation caused by slice permutation, we tested our methods on tensor data

that has undergone random slice permutation. For clarity, we denote the methods tested on

tensor data with the original frontal slice order by adding the ’-Original’ abbreviation. The

mean of the Peak Signal-To-Noise Ratio (MPSNR) is employed as the performance metric

for all methods in tensor recovery, and the best results are highlighted in bold.
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κ = 30

ROM DFT DCT

methods mobile bus tempete mobile bus tempete mobile bus tempete

t-SVD 21.19 25.55 25.24 21.23 25.70 25.32 21.23 25.71 25.30

t-SVD-Original 21.20 25.56 25.24 22.71 27.11 25.88 22.05 26.73 25.58

t-SVD-Ours 22.08 27.00 25.72 23.11 28.27 26.27 22.22 27.57 25.76

TF 21.18 25.57 25.23 21.23 25.70 25.34 21.22 25.71 25.29

TF-Original 21.16 25.56 25.23 22.71 27.11 25.88 22.05 26.73 25.58

TF-Ours 22.13 27.07 25.73 23.09 28.17 26.26 22.22 27.43 25.75

κ = 50

ROM DFT DCT

methods mobile bus tempete mobile bus tempete mobile bus tempete

t-SVD 23.76 28.56 28.51 23.80 28.71 28.58 23.79 28.72 28.54

t-SVD-Original 23.76 28.57 28.52 25.74 30.22 29.43 24.81 29.74 29.00

t-SVD-Ours 24.92 30.07 29.15 26.24 31.30 29.82 25.08 30.58 29.21

TF 23.76 28.58 28.53 23.77 28.70 28.59 23.79 28.72 28.57

TF-Original 23.73 28.57 28.51 25.74 30.22 29.43 24.81 29.74 29.00

TF-Ours 24.94 30.12 29.15 26.27 31.18 29.83 25.08 30.53 29.21

Table 5.1: MPSNR results by different methods

5.3.1 Video Reconstruction

In this section, we compared our proposed methods, including the SVD-based method

presented in Algorithm 5.1 and the TF-based method presented in Algorithm 5.2, with the

traditional SVD-based method given in (5.6) and TF-based method given in (5.9), for video

reconstruction. We evaluated all methods on three video sequences, including mobile, bus,

and tempete.

All results are presented in Table 5.1, which shows that our methods get the best perfor-

mance in TPCA for all cases. Particularly, the performance gap between our methods and

the other methods becomes more significant when the video sequence exhibits larger devia-

tions. This indicates that our methods effectively mitigate the slice permutation variability.

Moreover, our methods outperform the other methods even when the videos are in their
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methods µ(0) ρ λ

TRPCA-ROM 1e − 8 1.6 14/
√

max(I1, I2)I3

TRPCA-DFT 1e − 3 1.9 1.3/
√

max(I1, I2)I3

TRPCA-DCT 1e − 6 1.7 14/
√

max(I1, I2)I3

TRPCA-ROM-our 5e − 7 1.1 14/
√

max(I1, I2)I3

TRPCA-DFT-our 1e − 3 1.1 λ = 1.4/
√

max(I1, I2)I3

TRPCA-DCT-our 1e − 4 1.2 λ = 14/
√

max(I1, I2)I3

Table 5.2: Parameter setting for different methods.

methods c = 0.05 c = 0.1 c = 0.15 c = 0.2 c = 0.25 c = 0.3

TRPCA-ROM 31.80 31.28 30.14 28.03 23.71 19.14

TRPCA-ROM-our 45.41 45.02 44.26 42.37 34.40 23.09

TRPCA-DFT 33.96 33.57 33.19 28.15 21.62 17.33

TRPCA-DFT-our 45.52 45.07 44.31 42.09 33.05 21.94

TRPCA-DCT 34.72 34.35 33.75 30.18 23.58 18.31

TRPCA-DCT-our 43.89 44.35 44.16 40.35 28.25 20.23

Table 5.3: MPSNR results by different methods for TRPCA on Pavia University

original frame order. For instance, in both mobile and bus sequences with the original frame

order, the MPSNR results obtained by our methods surpass the other methods by more than

0.5 dB for DFT and more than 1 dB for ROM.

methods c = 0.05 c = 0.1 c = 0.15 c = 0.2 c = 0.25 c = 0.3

TRPCA-ROM 31.78 31.06 30.46 29.42 28.71 27.47

TRPCA-ROM-our 47.41 46.95 45.99 44.91 42.79 39.96

TRPCA-DFT 37.66 36.57 35.41 33.98 27.29 20.66

TRPCA-DFT-our 49.51 48.43 46.64 44.06 39.57 29.19

TRPCA-DCT 36.37 35.75 34.45 33.64 32.4 30.89

TRPCA-DCT-our 47.22 46.57 45.63 44.41 39.97 35.98

Table 5.4: MPSNR results by different methods for TRPCA on Botswana
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methods c = 0.05 c = 0.1 c = 0.15 c = 0.2 c = 0.25 c = 0.3

TRPCA-ROM 32.49 32.10 31.67 30.88 29.96 28.51

TRPCA-ROM-our 34.79 34.50 34.19 33.91 33.65 33.20

TRPCA-DFT 35.19 34.45 31.81 24.44 19.68 17.40

TRPCA-DFT-our 37.09 36.84 36.50 33.32 23.59 18.45

TRPCA-DCT 33.05 32.52 31.94 31.23 30.10 27.27

TRPCA-DCT-our 35.45 34.66 34.74 34.23 34.15 32.71

Table 5.5: MPSNR results by different methods for TRPCA on Indian_pines

5.3.2 Image Sequence Recovery

In this part, we compared the performance of the proposed methods, including TRPCA-

ROM-our, TRPCA-DFT-our, and TRPCA-DCT-our (our TRPCA method presented in

Algorithm 5.3 by using ROM, DFT, and DCT, respectively) with TRPCA-ROM, TRPCA-

DFT, and TRPCA-DCT2 (TRPCA method given in [50] using ROM, DFT, and DCT,

respectively) in image sequence recovery. We evaluated all methods on three hyperspectral

image databases, including Pavia University3, Botswana3, and Indian_pines3. Each data

has dimensions of I1 × I2 × I3 and is contaminated by random-valued impulse noise with

density level c = 0.05 : 0.1 : 0.25, where I3 represents the number of spectral bands. The

parameters for all methods are empirically set and presented in Table 5.2.

The MRSNR results are presented in Table 5.3-5.5, where our proposed method con-

sistently outperforms other methods significantly across all cases. Particularly, our method

achieves more than a 10 dB improvement over other methods for most cases on the Pavia

University and Botswana datasets. These results demonstrated the advantage of our methods

over traditional TRPCA methods for image sequence recovery when the order of the image

sequence is perturbed.

2 https://github.com/canyilu/LibADMM-toolbox
3 http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensin_Scenes

105



5.4 Summary

This paper aims to investigate the issue of slice permutation variability (SPV) in t-product-

based tensor recovery methods and focuses on accurately recovering low-rank tensors from

high-dimensional tensor data with perturbations in the order of tensor slice sequences.

To address this problem, we propose a generalized framework (5.4) that tackles SPV in t-

product-based tensor recovery methods. We apply this framework to TPCA (both SVD-based

and TF-based approaches) and TRPCA and employ BCD and ADMM algorithms to solve

the resulting models, respectively. The experimental results demonstrate the effectiveness of

the proposed methods in mitigating SPV in t-product-based tensor recovery.
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Chapter 6

A Novel Tensor Factorization-Based

Method for Tensor Recovery

6.1 Introduction

Although the t-product-based tensor completion methods have achieved great success,

there are still two challenges: (1) The TCTF [102] is based on a basic hypothesis that the

tensor with tensor tubal rank κ can be approximately decomposed to the t-product of two

skinny tensors A ∈ RI1×κ×I3 and B ∈ Rκ×I2×I3 (κ could be obtained by estimating the

tensor tubal rank), so it overly relies on the rank estimation strategy. On the other hand,

due to the lack of a rank-increasing scheme, the rank estimation strategy given in [102]

often underestimates the true rank, causing performance degradation in TCTF. (2) Currently,

iterative re-weighted tensor nuclear norm algorithms [74, 68] and generalized tensor singular

value thresholding [93] were proposed to solve the non-convex approximation of tensor
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recovery. These algorithms require computing the t-SVD of the original large tensor in each

iteration, causing a high computational cost. Therefore, it is necessary to develop an efficient

and effective tensor recovery framework for a wide range of surrogate functions.

To address the issues mentioned above, this paper proposes a novel tensor completion

framework with a new tensor norm that utilizes a dual low-rank constraint (TCDLR), and

its goal is to avoid the high computational cost in the standard t-SVD-based method and

achieve superior recovery results. More specifically, the features of the proposed method are

as follows:

• First, a new tensor norm with a dual low-rank constraint is given to utilize the

low-rank prior and the true tubal-rank information at the same time. Based on the

proposed tensor norm, a series of surrogate functions (possibly non-convex) of the

tensor tubal rank in the resulting tensor completion model (TCDLR) are allowed to

achieve better performance in harnessing low-rankness within the tensor data and

solving the over-penalization problem in the TNN-based tensor completion. Besides,

Property 6.1, Theorem 6.1, and synthetic experiments confirm that TCDLR can be

less negatively affected by the misestimation of tensor rank compared with standard

tensor factorization-based methods.

• Second, an optimization algorithm is developed to solve TCDLR efficiently, in which

the t-SVD of a smaller tensor instead of the big one is computed by using a simple trick.

As a result, the total cost at each iteration of the developing algorithm is reduced to

O(I1I2I3 log I3+κI1I2I3) fromO(I(1)I2(2)I3+I1I2I3 log I3) achieved with standard t-

SVD-based methods, where I(1) = max(I1, I2) and I(2) = min(I1, I2). Here, κ≪ I(2)

is the estimation of tensor rank. The convergence of the optimization algorithm was

108



analyzed experimentally.

• Third, since the tensor rank of real tensor data is unknown, a novel rank estimation

method is proposed, which adopts an increasing and decreasing strategy to estimate the

tensor rank more precisely. By combining TCDLR with the proposed rank estimation

method, an efficient tensor completion framework (TCDLR-RE) is established to

accurately and effectively recover the principal components (the low-rank tensor).

The experiments demonstrate the high efficiency and effectiveness of TCDLR-RE.

6.2 Proposed Tensor Completion Framework

6.2.1 Formulation of TCDLR

Although TCTF can well address the issue of high computational complexity caused by

t-SVD for large tensors at each iteration, its over-reliance on the rank estimation strategy

often leads to degraded recovery accuracy. According to Property 6.1 (ii), the low-rank

estimation of TCTF and TC-RE will deviate significantly from the true value when the rank

estimation deviates from the true rank. Even worse, the true rank is difficult to be estimated

accurately, especially under a low sampling rate. Therefore, in addition to achieving a better

rank estimation, a new effective tensor completion model needs to be developed.

Property 6.1. For Y ,X ∈ RI1×I2×I3 , then

(i) ∥Y −X∥2F ≥ 1
I3

∑
i(σi(Ȳ )− σi(X̄))2;

(ii) ∥Y −X∥2F ≥ 1
I3

∑I3
i=1

∑
rank(Y)<j≤rank(X ) σj(X̄ i)

2 if rank(Y) < rank(X ).
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The fundamental idea of our approach is to calculate the t-SVD of the obtained smaller

tensor instead of the original tensor by utilizing tensor tubal rank information that could be

provided by rank estimation methods, thus reducing the computational complexity of the

original t-SVD-based methods. Therefore, a new tensor norm is introduced,

∥X∥∗,(κ,G) =

 ∞, if rank(X ) > κ;

∥X∥∗,G, if rank(X ) ≤ κ,

(6.1)

and the following generalized framework (TCDLR) is established:

min
X
∥X∥∗,(κ,G) s.t. PΩ(X ) = PΩ(M), (6.2)

where G can be any of the surrogate functions listed in Table 2.2. By minimizing ∥X∥∗,(κ,G),

both the low-rank prior and tensor tubal rank information rank(X ) ≤ κ are considered.

Theorem 6.1 shows the robustness of TCDLR to inaccurate rank estimations for κ. Noting

that since ∥ · ∥∗,G is a better approximation of the tensor tubal rank than the tensor nuclear

norm, the optimal solution to (6.4) is expected to be low rank. When rank(X̃ ) ≤ κ <

rank(X̊ ), the estimation κ provides a better prior for the true tensor tubal rank, which helps

to recover the low-rank tensor more accurately. Later, the effectiveness of TCDLR in tensor

recovery will be demonstrated by experiments further.

min
X

rank(X ) s.t. PΩ(M) = PΩ(X ), (6.3)

min
X
∥X∥∗,G s.t. PΩ(X ) = PΩ(M). (6.4)

Theorem 6.1. Let X̊ , X̂ and X̃ be the optimal solutions to (6.4), (6.2), and (6.3), respec-

tively. Then, we have:

(i) rank(X̊ ) ≥ rank(X̃ ) holds;
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(ii) If κ ≥ rank(X̊ ), X̂ is an optimal solution of (6.4) and X̊ is an optimal solution of

(6.2);

(iii) If κ = rank(X̃ ), X̂ is an optimal solution of (6.3);

(iv) κ < rank(X̃ ) holds if and only if ∥X̂∥∗,(κ,G) =∞.

As it will be shown later, benefiting from the proposed dual low-rank constraint, TCDLR

can avoid performing the t-SVD operation for the original bigger tensor that causes high

time consumption.

6.2.2 The Developing Optimization Algorithm for Solving TCDLR

6.2.2.1 A Trick to Efficiently Solve TCDLR

Since there exist A ∈ RI1×κ×I3 and B ∈ Rκ×I2×I3 such that X = A ∗B and ∥X∥∗,(κ,G) =

∥A ∗B∥∗,G when rank(X ) ≤ κ, the following problem is considered:

min
A,B
∥A ∗B∥∗,G s.t. PΩ(M) = PΩ(A ∗B), (6.5)

where A ∈ RI1×κ×I3 and B ∈ Rκ×I2×I3 . If (Â, B̂) is an optimal solution to (6.5), we have

∥Â ∗ B̂∥∗,(κ,G) = ∥Â ∗ B̂∥∗,G ≤ ∥X̂∥∗,(κ,G), where X̂ is the optimal solution to (6.2). Thus,

it can be concluded that Â ∗ B̂ is an optimal solution to (6.2).

Theorem 6.2. Let Y = A ∗B, where A ∈ RI1×κ×I3 and B ∈ Rκ×I2×I3 . If BT = QT ∗RT

is the QR decomposition of BT and Z = A ∗R,

Y = Z ∗Q
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and

DG(Y , τ) = DG(Z, τ) ∗Q

hold, where Z ∈ RI1×κ×I3 , Q ∈ Rκ×I2×I3 , and

DG(Y , τ) = argmin
X

1

2
∥Y −X∥2F + τ∥X∥∗,G.

According to Theorem 6.2, the t-SVD of the large tensor can be avoided by constructing

DG(A ∗B, τ). To achieve this goal, this paper introduces an auxiliary tensor X such that

X = A ∗B. Meanwhile, (6.5) is convert to

min
A,B,X

∥X∥∗,G s.t. PΩ(M) = PΩ(A ∗B), X = A ∗B,

which is equivalent to (6.6) when µ = +∞.

min
A,B,X

∥X∥∗,G +
µ

2
∥A ∗B −X∥2F s.t. PΩ(M) = PΩ(A ∗B)

When (6.6) is solved by iterative algorithms such as the Alternating Direction Method

of Multiplier (ADMM) [46], the t-SVD operation is only involved in solving

DG(A ∗B, τ) = argmin
X

τ∥X∥∗,G +
1

2
∥A ∗B −X∥2F . (6.6)

According to Theorem 6.2, a fast solver for (6.6) is presented in Algorithm 6.1.

6.2.2.2 The Developing Optimization Algorithm based on ADMM

By utilizing the above trick, TCDLR can be solved as follows. To simplify (6.6), an auxiliary

tensor E is introduced. Then, (6.6) can be rewritten to:

min
E∈I,A,B,X

µ

2
∥A ∗B −X∥2F + ∥X∥∗,G s.t. PΩ(M) = A ∗B + E , (6.7)
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Algorithm 6.1: Fast Solver to (6.6)
Input: A ∈ RI1×κ×I3 , B ∈ RI1×κ×I3 ,λ > 0.

Output: Sλ,G(A ∗B), Z ,Q and R.

1. Compute R and Q by QR decomposition [41] of (B(t+1))T : BT = QT ∗RT ;

2. Compute Z = A ∗R;

3. Obtain Sλ,G(Z) by Generalized Tensor Singular Value Thresholding

(GTSVT)[93]

4. Compute Sλ,G(A ∗B) = Sλ,G(Z) ∗Q.

where I = {E|PΩ(E) = 0}.

The lagrangian function of (6.7) is formulated as

Lµ(X ,E ,A,B,Y) =∥X∥∗,G +
µ

2
∥X −A ∗B∥2F + ⟨PΩ(M)−A ∗B − E ,Y⟩

+
µ

2
∥PΩ(M)−A ∗B − E∥2F , (6.8)

where Y is Lagrange multiplier, and µ is a positive scalar. Therefore, (6.7) is iteratively

solved by ADMM as follows.

Step 1 Calculate A(t+1) by

A(t+1) =argmin
A

Lµ(X (t),E (t),A,B(t),Y (t))

= argmin
A

∥X (t) −A ∗B(t)∥2F + ∥PΩ(M)−A ∗Q(t) − E (t) +
1

µ(t)
Y (t)∥2F

=argmin
A

∥C(t+1) −A ∗B(t)∥2F = C(t+1) ∗ (B(t))T ∗ (B(t) ∗ (B(t))T )† (6.9)

where C(t+1) = (PΩ(M)− E (t) +X (t) +
Y (t)

µ(t)
)/2.
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Algorithm 6.2: Solve (6.2) by the Developing Optimization Algorithm
Input: The observed tensor PΩ(M) ∈ RI1×I2×I3 , the support set Ω, ρ = 1.3,

µ̄ = 1014, ε = 10−9, κ.

Output: X (t+1)

Initialize: µ(0), B(0), E (0), X (0), Y (0), and t = 0

While not converge do

1. Compute A(t+1) by (6.16);

2. Compute B(t+1) by (6.10);

3. Calculate Q(t+1), Z(t+1) and X (t+1) by Algorithm 6.1;

4. Calculate P (t+1) by P (t+1) = Z(t+1) ∗Q(t+1);

5. Calculate E (t+1) by (6.12);

6. Calculate Y (t+1) by (6.13);

7. Calculate µ(t+1) by (6.14);

8. Check the convergence condition: ∥PΩ(M)−P (t) − E (t)∥∞ < ε,

∥P (t+1) −P (t)∥∞ < ε ,∥E (t+1) − E (t)∥∞ < ε;

9. t = t+ 1.

end while

Step 2 Calculate B(t+1) by

B(t+1) =argmin
B

Lµ(X (t),E (t),A(t+1),B,Y (t))

= argmin
B

∥C(t+1) −A(t+1) ∗B∥2F = ((A(t+1))T ∗A(t+1))† ∗ (A(t+1))T ∗ C(t+1)

(6.10)
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Step 3 Calculate X (t+1) by

X (t+1) = argmin
X

1

2
∥A(t+1) ∗B(t+1) −X∥2F +

1

µ(t)
∥X∥∗,G = DG(A(t+1) ∗B(t+1),

1

µ(t)
),

(6.11)

and obtain Z(t+1) and Q(t+1) by Algorithm 6.1.

Step 4 Calculate E (t+1) by

E (t+1) = argmin
E

µ(t)

2
∥PΩ(M)−P (t+1) +

Y (t)

µ(t)
− E∥2F , s.t. E ∈ I, (6.12)

where P (t+1) = Z(t+1) ∗Q(t+1).

Step 5 Calculate Y (t) by

Y (t+1) = µ(t)(PΩ(M)−P (t+1) − E (t+1)) +Y (t). (6.13)

Step 6 Calculate µ(t+1) by

µ(t+1) = min(µ̄, ρµ(t)), (6.14)

where µ̄ is the upper bound of µ(t+1), and ρ > 1.

According to A(t) ∗ B(t) = Z(t) ∗Q(t), range(Z(t)) and range(Q(t)) are the column

space and row space of A(t) ∗ B(t), respectively. Then, with (B(t+1))T = (Q(t+1))T ∗

(R(t+1))T , we have

min
B
∥C(t+1) − C(t+1) ∗ (Q(t))T ∗B∥2F

≤min
B
∥C(t+1) − C(t+1) ∗ (B(t))T ∗ (B(t) ∗ (B(t))T )† ∗B∥2F . (6.15)

Therefore, A(t+1) is updated by

argmin
A

∥C(t+1) −A ∗Q(t)∥2F = C(t+1)(Q(t))T (6.16)

for easy computation. The whole procedure of the algorithm is presented in Algorithm 6.2.
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Table 6.1: Computational complexity of Algorithm 6.2

Step no. Operation Complexity

1

I1×κ×I3︷ ︸︸ ︷
A(t+1) = argmin

A
µ∥

I1×I2×I3︷ ︸︸ ︷
C(t+1) −

I1×κ×I3︷︸︸︷
A ∗

κ×I2×I3︷︸︸︷
B(t) ∥2F O(I1I2I3 log I3 + κI1I2I3)

2

κ×I2×I3︷ ︸︸ ︷
B(t+1) = argmin

B
µ∥

I1×I2×I3︷ ︸︸ ︷
C(t+1) −

I1×κ×I3︷ ︸︸ ︷
A(t+1) ∗

κ×I2×I3︷︸︸︷
B ∥2F O(I1I2I3 log I3 + κI1I2I3)

3 [

I2×κ×I3︷ ︸︸ ︷
(Q(t+1))T ,

κ×κ×I3︷ ︸︸ ︷
(R(t+1))T ] = QR(

I2×κ×I3︷ ︸︸ ︷
(B(t+1))T ) O(I2κI3 log I3 + I2κ

2I3)

3

I1×κ×I3︷ ︸︸ ︷
Z(t+1) =

I1×κ×I3︷ ︸︸ ︷
A(t+1) ∗

κ×κ×I3︷ ︸︸ ︷
R(t+1) O((I1 + κ)κI3 log I3 + I1κ

2I3)

3 S 1
µ
,G(

I1×κ×I3︷ ︸︸ ︷
Z(t+1) ) O(I1κI3 log I3 + I1κ

2I3)

4

I1×I2×I3︷ ︸︸ ︷
P (t+1) =

I1×κ×I3︷ ︸︸ ︷
A(t+1) ∗

κ×I2×I3︷ ︸︸ ︷
B(t+1) O(I1I2I3 log I3 + I1κI2I3)

total total cost at each iteration O(I1I2I3 log I3 + κI1I2I3)

6.2.3 Complexity Analysis

According to Algorithm 6.2, since TCDLR only requires computing the t-SVD of Z with

a smaller size, it avoids performing the t-SVD operation with a high time complexity

of O(κI1I2I3). The step-by-step computational complexity of the proposed algorithm is

summarized in Table 6.1. The total cost at each iteration (requires computing of FFT [50])

is O(I1I2I3 log I3 + κI1I2I3), as shown in Table 6.1.

6.2.4 Rank Estimation

In the following, a method is proposed to estimate κ in (6.5) for a lower bound κmin and an

upper bound κmax of κ.
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6.2.4.1 Increase Strategy

According to Theorem 6.1 (iv), κ < rank(X̃ ) holds and κ should be increased when

∥X̂∥∗,(κ,G) =∞. In the following, the case of ∥X̂∥∗,(κ,G) =∞ is considered.

Since ∥X̂∥∗,(κ,G) = ∞, κ < rank(X ) holds for ∀X ∈ {X |PΩ(M) = PΩ(X )}, (6.5)

has no solution. A preliminary idea for the critical condition of increasing κ is ∥C(t)−A(t) ∗

B(t)∥F ↛ 0 when t→∞. However, it is difficult to determine whether ∥C(t)−A(t)∗B(t)∥F

converges to 0 and the large value of ∥C(t) −A(t) ∗B(t)∥F should be allowed in the early

iteration of the algorithm. According to [97], Ã∗ B̃ is the rank-κ estimation of C(t) if (Ã, B̃)

is the the optimal solution to minA,B ∥C(t) −A ∗ B∥F . Therefore, we increases κ only if

some important components of C(t) are lost in A(t) ∗B(t).

Defining D = C(t) −A(t) ∗B(t) ∈ RI1×I2×I3 , according to [73], if D̄i is Gaussian dis-

tributed for given i (in this case, D̄i contains less meaningful information), σ1(
D̄i−µ̂i(D̄i)

δ̂i(D̄i)
) ≤

√
I1 +
√
I2 + h(h ≥ 1) holds with a high probability, where µ̂i(D̄i) is the mean value of all

elements in D̄i and δ̂i(D̄i) =
√

1
I1I2−1

∑I1
w=1

∑I2
j=1([D̄i]w,j − µ̂i)2. Here, this paper uses

s̄max(
D̄i−µ̂i

δ̂i
) = ∥p∗ · D̄i−µ̂i

δ̂i
∥2 to estimate σ1(

D̄i−µ̂i(D̄i)

δ̂i(D̄i)
), where p∗ is a 1× I1 vector whose

entries are independent standard normal random variables, δ̂i =
√

1
w−1

∑w
j=1(sj − µ̂i)2,

µ̂i =
1
w

∑w
j=1 sj and s ∈ Rw is a vector sampled from D̄i.

Thus, when s̄max(
D̄i−µ̂i

δ̂i
) >
√
I1 +

√
I2 + h (h ≥ 1), κ(t)

i is increased to

κ
(t+1)
i = min(κ

(t)
i + l, κmax)(l > 0). (6.17)

By performing the QR decomposition of [Q̄(t+1)
i ;P · D̄i]

T , we have

[Q̄
(t+1)
i ;P · D̄i]

T = Q̃
T

i R̃
T

i ,
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where P is an l×I1 matrix whose entries are independent standard normal random variables.

Thus, we augment

Q̄
(t+1)
i ← Q̃i ∈ Cκ

(t+1)
i ×I2 (6.18)

and

Z̄
(t+1)
i ← [Z̄

(t+1)
i ,0]R̃i ∈ CI1×κ

(t+1)
i . (6.19)

6.2.4.2 Decrease Strategy

Note that in the computing process S 1
µ
,G(Z(t+1)), the singular values of Z̄(t+1)

i will be

obtained first. Therefore, it is assumed that λ1,i ≥ λ2,i ≥ · · · ≥ λ
κ
(t+1)
i ,i

are singular values

of Z̄(t+1)
i . Then, the quotient sequence λ̃j,i = λj,i/λj+1,i(j = 1, . . . , κ

(t+1)
i −1) is computed.

Suppose si = argmax1≤j<ri
λ̃j,i and τi =

(κ
(t+1)
i −1)λ̃si,i∑

j ̸=si
λ̃j,i

, if τi ≥ 10 indicates a large drop in

the magnitude of singular values [102], κ(t+1)
i should be updated as follows [8]:

κ
(t+1)
i = max(κ̃i, κmin), (6.20)

where κ̃i satisfies
∑κ̃i

j=1 λj,i/
∑ri

j=1 λj,i ≥ 95%.

Let Z̄(t+1)
i = QZ ·RZ and RZ = Ũ · S̃ · Ṽ T

be the QR decomposition of Z̄(t+1)
i and

the SVD of RZ , respectively. This paper updates

Z̄
(t+1)
i ← QZ · [Ũ ]

:,1:κ
(t+1)
i
· [S̃]

1:κ
(t+1)
i ,1:κ

(t+1)
i

, (6.21)

and

Q̄
(t+1)
i ← [Ṽ ]T

:,1:κ
(t+1)
i

· Q̄(t+1)
i . (6.22)

Different from [102], in the proposed rank estimation strategy, κ(t+1)
i , Z̄(t+1)

i , and Q̄
(t+1)
i

are adjusted for each slice by considering the difference of each slice in the tensor. Based on
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Figure 6.1: The relative error with iterations for (a) N = 1000 and (b) N = 3000, and (c)

the plot of the singular values (i.e., [S]i,i,1) of the recovered low-rank tensor by different

methods for N = 1000, under the tubal rank r̄ = 0.1×N and a sampling rate of 30%.
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(a) t-TNN [51]
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(b) TC-RE [65]
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(c) TCDLR-RE

Figure 6.2: Comparison of the recovery capacity in 1000×1000×3 tensor with varying tubal

ranks and sampling rates. The white regions denote successful recovery with relerr ≤

10−2; the black regions denote failed recovery with relerr > 10−2.

Algorithm 6.2 and the proposed rank estimation method, Algorithm 6.3 (TCDLR-RE) is

given.
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Figure 6.3: Comparison of the PSNR values on the randomly selected 50 images of the

Berkeley Segmentation Dataset.

(a) Original (b)

LRMC[10]

(c)

SNN[45]

(d) t-

TNN[51]
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RE[65]

(h) TCDLR-
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Figure 6.4: Completion of the visual results on the Berkeley Segmentation Dataset with a

sampling rate of 30%: (a) The original image and the results by different methods including

(b) LRMC, (c) SNN, (d) t-TNN, (e) TCTF, (f) PSTNN, (g) TC-RE, and (h) TCDLR-RE,

respectively.
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6.3 Experiments

To verify the effectiveness and efficiency of TCDLR-RE for tensor completion, it was com-

pared with six state-of-the-art methods, including Low-Rank Matrix Completion (LRMC)1[10],

SNN1[45], t-TNN1[51], TCTF2[102], PSTNN3 [39], and TC-RE [65] on both synthetic and

real-world data. For TCDLR-RE, ℓp was selected as the non-convex penalty function in

∥X∥∗,(κ,g), and the parameters were set as κmax = 0.5 × min(I1, I2), κmin = 25, and

p = 0.8. For TCTF, the parameters suggested in [102] did not lead to good performance on

a large dataset, so they were empirically tuned, as will be discussed later. The parameter

settings of SNN, PSTNN, and TC-RE are consistent with the suggestions by the authors, and

LRMC and t-TNN are free parameters. For fairness, these methods were run respectively 10

times in these experiments, and the average results were reported for each method. All the

experiments were conducted on a personal computer running Windows 10 operating system

and MATLAB (R2020b) (Intel Core i7-8700 3.20-GHz CPU and 16 GB memory).

6.3.1 Synthetic Experiments

All tensor product-based methods including t-TNN, TCTF, PSTNN, TC-RE, and TCDLR-

RE were tested with synthetic data. The tensors of size N × N × 3 with varying N =

{1000, 2000, 3000, 4000} were considered. The low-rank tensor data M ∈ RN×N×3 were

generated with a tensor tubal rank r̄ by M = M1 ∗M2, where the entries of M1 ∈
1 https://github.com/canyilu/LibADMM-toolbox
2 https://panzhous.github.io/assets/code/TCTF_code.rar
3 https://github.com/zhaoxile/Multi-dimensional-imaging-data-recovery-via-minimizing-the-partial-sum-of-

tubal-nuclear-norm
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RN×r̄×3 and M2 ∈ Rr̄×N×3 were independently sampled from an N (0, 1). Then, 3cN2

elements of M were sampled uniformly to construct PΩ(M), where c is the sampling rate.

This paper takes the relative error (relerr)

relerr =∥ X̂ −M ∥2F / ∥M ∥2F

and the running time to evaluate the effectiveness and efficiency of different algorithms,

where X̂ is the recovered tensor of PΩ(M). Following [102], the initialized rank κ(0) =

[1.5r̄, 1.5r̄, 1.5r̄] was set for TCTF and TCDLR-RE. All experimental results are presented

in Table 6.2 and Figs. 6.1-6.2.

In Table 6.2, our methods (TCDLR and TCDLR-RE) are compared with other four

tensor-product-based methods in terms of the running time and relerr, where κ in TCDLR

is set to 0.5n according to the low tubal rank prior. The best two results for each case are

shown in bold. It can be seen from Table 6.2 and Fig. 6.1 that:

(1) In all cases, TCDLR-RE and TCDLR achieve the best performance on relerr at-

tributed to the proposed dual low-rank constraint and rank estimation. The superiority

of TCDLR on relerr demonstrates its robustness to κ. Besides, as shown in Fig.

6.1 (c), for TCTF, the singular values [S]i,i,1 (i = 1, 2, · · · , n) decrease significantly

at i = 2 and i = 72, and for TC-RE and TCDLR-RE, the singular values decrease

significantly at i = r̄, which indicates that the proposed TCDLR-RE and TC-RE

estimated the tensor tubal rank more accurately than TCTF. In addition, owing to

introducing the proposed dual low-rank constraint, the singular values [S]i,i,1 (i > r̄)

of TCDLR-RE are much close to zeros than those of TC-RE.

(2) Table 6.2 shows that TCDLR-RE and TCTF achieved the best performance in terms
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of running time, and this is because they have the same low computational complexity

(O(κI1I2I3)) for each iteration. Attributed to the proposed rank estimation strategy,

TCDLR-RE performed better in running time than TCDLR. The running time of

TCDLR is about two times that of TCDLR-RE. Besides, Fig. 6.1 (a)-(b) show that

less running time obtained is not only because TCDLR-RE has low computational

complexity for each iteration but also because it converges to the true solution M

with fewer iterations than other methods.

In Fig. 6.2, TCDLR-RE is compared with t-TNN and TC-RE which achieved better

performance on relerr than other compared methods. Fig. 6.2 presents the results of

relerr with varying c and r̄ for fixed N = 1000. It was determined that a trial is successful

if relerr ≤ 10−2, i.e., the cases corresponding to the white regions were regarded as

successful recovery to M. It can be seen from Fig 6.2 that the region of correct recovery in

Fig 6.2 (c) is broader than that in Fig. 6.2 (a)-(b). These results demonstrate the effectiveness

and efficiency of TCDLR-RE.

6.3.2 Real-World Applications

In this subsection, all seven tensor completion algorithms were tested in terms of image

and video inpainting. cI1I2I3 elements were sampled uniformly from the data tensor M ∈

RI1×I2×I3 to generate the observation matrices or the observation tensor PΩ(M).

Some implementation details are provided: (1) In these experiments, the sampling rate

was set to c = 0.3. The PSNR (the peak signal-to-noise ratio), MPSNR (mean PSNR), and

running time were adopted to evaluate the effectiveness and efficiency of the method. The

123



(a) Original (b)

LRMC[10]

(c) SNN

[45]

(d) t-TNN

[51]

(e) TCTF

[102]

(f)

PSTNN[39]

(g) TC-

RE[65]

(h) TCDLR-

RE

Figure 6.5: Completion of visual results on the DOTA-v2.0 Dataset with a sampling rate

of 30%: (a) The original image and the results obtained by different methods including

(b) LRMC (c) SNN, (d) t-TNN, (e) TCTF, (f) PSTNN, (g) TC-RE, and (h) TCDLR-RE,

respectively.

best results for each case are shown in bold. Assuming that X̂ is the recovered tensor from

PΩ(M), the PSNR value of X̂ is formulated as

PSNR = 10 log10

(
I1I2I3∥M∥2∞
∥X̂ −M∥2F

)
,

and the mean PSNR is defined as the average PSNR results of m selected images. (2) For the

matrix recovery-based method (LRMC), matrix completion was performed on each frontal

slice of the observed tensor, and the results were combined to obtain the recovered tensor. (3)

For TCTF, the initialized rank was set to κ(0) = [30, 30, 30] for the dataset with a small size

(i.e., I1, I2 < 700) as suggested in [102]. Since κ(0) = [30, 30, 30] did not perform well for a

large dataset, this paper empirically set the initialized rank as κ(0) = [70, 70, 70] in this case.

(4) The initialized rank in TCDLR-RE was set as κ(0) = [0.05, 0.05, · · · , 0.05]×min(I1, I2).
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6.3.2.1 Image Inpainting

In this part, all algorithms were tested on two color image databases of different sizes: the

Berkeley Segmentation Dataset [59] and the DOTA Dataset4[79, 18].

The MPSNR and time consumption of the seven competing inpainting algorithms on

the Berkeley Segmentation Dataset are reported in Table 6.3. Fig. 6.3 compares the PSNR

values of different algorithms on 50 randomly selected images. From Table 6.3 and Fig. 6.3,

it can be seen that TCDLR-RE achieves the best performance in tensor recovery and took

the least running time. Meanwhile, the visual quality of the seven algorithms is reported in

Fig. 6.4, from which it can be seen that the visual quality of TCDLR-RE is more convincing.

Specifically, the enlarged area in Fig. 6.4 indicates that our TCDLR-RE well restores the

eye of the eagle, the spots of the ladybug, and the scales and fins of the fish. Compared with

LRMC and TCTF, there is less visible noise in the recovered images by TCDLR-RE.

Fig. 6.5 and Table 6.4 present the experimental results of all algorithms on the DOTA-

v2.0 dataset. As shown in Table 6.4, the PSNR and running time of the seven tensor

completion algorithms on ten images indicate that: (1) the average PSNR value of TCDLR-

RE is over 0.5 dB larger than those of the comparison methods; (2) TCDLR-RE runs much

faster than other methods. Especially, the average running times of SNN, t-TNN, and PSTNN

are about six times that of TCDLR-RE. Compared with TC-RE, TCDLR-RE even runs

40 times faster. In addition, the visual recovery results given in Fig. 6.5 indicate that the

TCDLR-RE can retain more detail within the image data than other methods. Besides, there

is more spot noise caused by the image inpainting algorithm on the recovered images by

LRMC and TCTF.
4 https://captain-whu.github.io/DOTA/index.html
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Figure 6.6: Comparison of the PSNR values of all methods on 32 HSIs from the CAVE

database.

6.3.2.2 HSI Inpainting

Here, the performance of all methods was evaluated on two different hyperspectral images

(HSIs) databases: the CAVE database5 [81] and the BGU iCVL Hyperspectral Image Dataset

(BiHID) 6 [1].

The experimental results on the CAVE database and the BiHID are presented in Fig.

6.6, Table 6.5 and Table 6.6, respectively. From these results, the following observations

are obtained. First, TCDLR-RE achieves the best PSNR and MPRNR on both datasets.

Second, on both datasets, the proposed method (TCDLR-RE) runs much faster than the

comparison methods. Especially, for the BiHID, the average running time of SNN, t-TNN,

and PSTNN is about six times that of TCDLR-RE, and TCDLR-RE runs even 60 times

faster than TC-RE. All these results demonstrate the effectiveness and high efficiency of

TCDLR-RE for HSIs.
5 http://www.cs.columbia.edu/CAVE/databases/multispectral/
6 http://icvl.cs.bgu.ac.il/hyperspectral/
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6.3.2.3 Video Inpainting

In this part, the seven methods were tested on the first five videos in the GOT-10k video

database7[35], including “Dolphin”(1920 × 1080 × 100), “City” (1920 × 1080 × 80),

‘Dock’(1920 × 1080 × 80), “Ship” (1280 × 720 × 71), “Handrail” (1920 × 1080 × 68),

“Penguin” (1920×1080×100), “Leg” (1280×720×100), “Chicken” (1920×1080×100),

“Bird” (1920×1080×97), and “Swan” (1280×720×100). The first 30 frames of each video

sequence were taken and converted to the gray format. In this way, a tensor M ∈ RI1×I2×I3

was constructed for a gray video sequence with a frame size of I1 × I2, where I3 is the

number of frames in the video sequence.

All experimental results are given in Table 6.7 and Fig. 6.7 to show the effectiveness

and efficiency of TCDLR-RE. From the PSNR results given in Table 6.7, it can be seen

that TCDLR-RE performs the best on video inpainting in most of the cases, and it runs the

fastest. Especially, compared with TCTF, our method can achieve at least 1.5 times speed-up;

compared with other tensor completion methods (including SNN, t-TNN, PSTNN, and

TC-RE), our method even achieves more than 10 times speed-up. Fig. 6.7 presents the visual

analysis for the three testing videos. The enlarged area of recovery results indicates that

TCDLR-RE performs better in restoring the details of letters and ships. These experimental

results further demonstrate the superiority of our method for large-scale data.

7 http://got-10k.aitestunion.com/
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Figure 6.7: The 15th frame of the visual results in the video data. From top to bottom: “city”,

“Dock”, “Handrail”.
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Figure 6.8: (a) The relerr results on the synthetic data with N×N×3 for different p when

sampling rate = 30% and r̄ = 0.1N ; (b) The PSNR results on the Berkeley Segmentation

Dataset for different p when sampling rate = 30%.
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6.3.2.4 Analysis of Parameters

In the proposed method TCDLR-RE, there are two types of parameters: the parameters in

the proposed rank estimation (such as κmin and κmax), and the parameters in the proposed

tensor completion model (TCDLR), where the parameters in the proposed rank estimation

can be given by the low-rank prior. Besides, according to the definition of the proposed

norm, only one tunable parameter p is involved in TCDLR when G is ℓp. Therefore, in this

part, experiments were conducted on both synthetic data and real-world data to investigate

the influence of the parameter p. All results are presented in Fig. 6.8, from which it can

be seen that our method with p ∈ [0.7, 0.8] achieved more stable performance in tensor

recovery.

6.3.3 Results Analysis

In terms of running time, TCDLR-RE runs much faster than other methods in all cases.

For example, on the GOT-10k video database, TCDLR-RE runs 10 times faster than SNN,

t-TNN, PSTNN, and TC-RE, three times faster than LRMC and 1.5 faster than TCTF.

The reasons are analyzed as follows. (1) Owing to the proposed dual low-rank constraint,

the t-SVD of a smaller tensor Z is computed, and the t-SVD operation with large time

consumption is avoided, thus reducing the total cost at each iteration of the algorithm from

O(I(1)I2(2)I3 + I1I2I3 log I3) to O(κI1I2I3 + I1I2I3 log I3), where κ is an estimation of the

tensor rank. This indicates that TCDLR-RE has much lower computation complexity than

traditional methods (including LRMC, SNN, t-TNN, and PSTNN) based on t-SVD for

the case of data tensors with a low rank. (2) Fig. 6.1 (c) shows that the developed rank
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estimation method in TCDLR-RE can estimate the tensor rank accurately. The comparison

of TCDLR and TCDLR-RE in Table 6.6 demonstrates the contribution of the proposed

rank estimation method for reducing the running time. (3) Besides, as shown in Fig. 6.1

(a)-(b), TCDLR-RE converged to the optimal solution with fewer iterations than most of the

comparison methods.

Except for TCTF, most of the tensor-based methods (including SNN, t-TNN, PSTNN,

TC-RE, and TCDLR-RE) achieved a better performance than the matrix-based method

(LRMC). This is because tensor-based methods can exploit the low-rank structure in the

tensor data and utilize the relationship between different tensor slices well compared with

the matrix-based method. Compared with tensor-based methods, TCDLR-RE achieved the

best results in real-world applications. Specifically, the gap between the average PSNR

values of TCDLR-RE and the other methods is about 1 dB on the BiHID. This is because

(1) Compared with the traditional tensor methods, the proposed dual low-rank constraint

in our methods (including TCDLR and TCDLR-RE) effectively addresses the issue of

over-penalization in t-TNN-based methods and fully utilizes the low-rankness prior in tensor

data, which helps to obtain the low-rank estimation more accurately. (2) Compared with

the existing tensor factorization methods, including TCTF and TC-RE, the performance

of TCDLR-RE is robust to the tensor rank estimation as proved by Property 6.1, Theorem

6.1 and the comparison of TCDLR with other methods in Table 6.6. (3) Compared with

the estimation strategy adopted in TCTF, the proposed estimation method can estimate true

tubal rank more accurately as proved by the comparison in Fig. 6.1 (c).
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6.4 Summary

This work presents an efficient and effective tensor completion algorithm. First, aiming at

the over-penalization issue in t-TNN-based methods and the difficulty in estimating the true

tensor rank for tensor data with a small sampling rate, a novel low-rank tensor completion

method with a new tensor norm is proposed, which utilizes the dual low-rank constraint.

The proposed tensor norm enables the proposed methods to be more robust to inaccurate

rank estimation and recover the low-rank tensor more accurately. Meanwhile, to avoid the

high time consumption caused by performing the t-SVD operation on a large tensor, a

trick to compute the t-SVD of a smaller tensor Z ∈ RI1×κ×I3 instead of the original tensor

of size RI1×κ×I3 is used to solve TCDLR, thus reducing the total cost at each iteration

to O(I1I2I3 log I3 + κI1I2I3) from O(I(1)I2(2)I3 + I1I2I3 log I3) achieved by standard t-

SVD-based methods. Based on this, a novel estimation method with rank-increasing and

decreasing strategies is proposed for estimating the tensor rank κ. The experimental results

demonstrate the high effectiveness and efficiency of the proposed methods.
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Algorithm 6.3: TCDLR with the proposed rank estimation (TCDLR-RE)
Input: The tensor data M ∈ RI1×I2×I3 , the observed set Ω, ρ = 1.3, µ̄ = 1014, ε = 10−9, κmin, κmax,

l = min(I1, I2)/50, and h = 1.

Output: X (t+1)

Initialize: t = 0, E(0), X (0), Y(0), µ(0), κ(0)
i ∈ N+ and Q̄

(0)
i ∈ CI2×κ

(0)
i for i = 1, 2, · · · , ⌊ I3+1

2
⌋.

While not converge do

1. C̄(t+1)
= bdiag(fft((PΩ(M)− E(t) +X (t) +

Y(t)

µ
)/2, [], 3));

for i = 1, ..., ⌊ I3+1
2

⌋do

2. Ā(t+1)
i = C̄

(t+1)
i (Q̄

(t)
i )∗;

3. B̄(t+1)
i = ((Ā

(t+1)
i )∗Ā

(t+1)
i )†(Ā

(t+1)
i )∗C̄

(t)
i ;

4. Update Q̄
(t+1)
i and Z̄

(t+1)
i as follows:

[(Q̄
(t+1)
i )∗, (R̄

(t+1)
i )∗] = QR((B̄

(t+1)
i )∗);

Z̄
(t+1)
i = Ā

(t+1)
i R̄

(t+1)
i ;

5. Increase κ
(t+1)
i by (6.17), and adjust Q̄(t+1)

i and Z̄
(t+1)
i by (6.18)

and (6.19), respectively;

6. X̄(t+1)
i = GSVT(Z̄

(t+1)
i )Q̄

(t+1)
i , P̄ (t+1)

i = Z̄
(t+1)
i Q̄

(t+1)
i ;

7. Decrease κ
(t+1)
i by (6.20), and adjust Q̄(t+1)

i and Z̄
(t+1)
i by (6.22)

and (6.21), respectively;

end for

for i = ⌊ I3+1
2

⌋+ 1, ..., I3do

8. Update κ
(t+1)
i , X̄(t+1)

i and P̄
(t+1)
i as follows:

κ
(t+1)
i = κ

(t+1)
I3−i+2; X̄(t+1)

i = Conj(X̄
(t+1)
I3−i+2);

P̄
(t+1)
i = Conj(P̄

(t+1)
I3−i+2);

end for

9. Calculate X (t+1) = ifft(X̄ (t+1)
, [], 3) and P(t+1) = ifft(P̄(t+1)

, [], 3);

10. Update E(t+1), Y(t+1) and µ(t+1) by (6.12), (6.13) and (6.14), respectively;

11. Check the convergence condition: ∥P(t+1) −P(t)∥∞ < ε,

∥E(t+1) − E(t)∥∞ < ε, ∥PΩ(M)−P(t) − E(t)∥∞ < ε

12. t = t+ 1.

end while
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Table 6.2: Comparison of relerr and running time (seconds) on synthetic data when the

sampling rate=30% and r̄ = 0.1N .

Method t-TNN[51] TCTF[102] PSTNN[39] TC-RE[65] TCDLR TCDLR-RE

Data relerr time(s) relerr time(s) relerr time(s) relerr time(s) relerr time(s) relerr time(s)

n = 1000 5.24E−2 140.9 5.29E−2 30.4 1.19E−1 64.5 5.06E−2 1338.2 4.75E−3 62.9 4.75E−3 42.4

n = 2000 5.15E−2 1591.7 6.85E−2 165.6 2.37E−1 742.9 7.23E−2 19701.8 5.28E−3 432.0 5.40E−3 228.9

n = 3000 5.10E−2 7837.8 6.81E−2 481.0 3.24E−1 2384.2 9.67E−2 63472.4 6.25E−3 1536.0 6.52E−3 644.6

n = 4000 5.19E−2 17870.6 6.81E−2 1033.2 3.86E−1 5543.4 8.70E−2 131239.6 7.76E−3 3784.1 8.30E−3 1706.8

Table 6.3: Comparison of the MPSNR and total time (seconds) on the 50 randomly selected

images with a sample rate of 30% on the Berkeley Segmentation Dataset.

LRMC[10] SNN[45] t-TNN[51] TCTF[102] PSTNN[39] TC-RE[65] TCDLR-RE

MPSNR 23.26 25.76 26.78 21.41 27.32 23.64 27.83

Average time 11.69 29.17 12.46 4.07 24.63 62.60 3.58

Table 6.4: Comparison of the PSNR and running time (seconds) on 10 randomly chosen

images from the DOTA-v2.0 Dataset with a sampling rate of 30%.

images
LRMC[10] SNN[45] t-TNN[51] TCTF[102] PSTNN[39] TC-RE[65] TCDLR-RE

PSNR time(s) PSNR time(s) PSNR time(s) PSNR time(s) PSNR time(s) PSNR time(s) PSNR time(s)

1 24.93 137.21 27.59 209.22 28.98 163.61 25.91 28.09 29.34 347.02 27.71 1113.40 29.94 24.70

2 26.94 128.35 29.43 198.85 30.68 161.81 27.48 28.08 30.92 320.25 29.22 1015.84 31.75 24.93

3 24.54 138.01 26.98 202.09 28.17 167.40 25.14 28.19 28.32 314.94 27.05 1111.42 28.79 24.47

4 29.19 129.75 32.56 201.79 34.15 149.11 29.18 27.75 34.83 314.63 31.04 918.00 36.08 24.50

5 24.53 139.80 27.37 211.15 29.12 184.40 24.58 27.70 29.56 314.76 27.82 1106.52 30.17 24.36

6 27.60 132.55 30.11 189.97 31.34 165.90 26.86 27.85 31.44 314.75 29.66 1024.86 32.55 24.58

7 26.00 136.96 28.23 189.99 29.20 168.21 26.47 27.45 29.41 314.46 27.98 1114.94 29.85 24.71

8 27.59 133.63 29.99 189.82 30.98 172.42 28.04 27.43 31.15 314.90 29.59 1016.91 31.83 24.60

9 24.25 128.18 26.88 193.03 28.82 165.67 25.23 27.61 29.30 314.40 27.53 1111.54 30.10 24.36

10 25.33 135.28 28.30 189.08 29.46 156.05 25.57 27.42 29.70 314.06 28.38 1073.92 30.59 24.36

Average 26.09 133.97 28.74 197.50 30.09 165.46 26.44 27.76 30.40 318.42 28.60 1060.74 31.16 24.56
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Table 6.5: Comparison of the MPSNR and average time (seconds) on the CAVE dataset with

a sampling rate of 30%.

LRMC[10] SNN[45] t-TNN[51] TCTF[102] PSTNN[39] TC-RE[65] TCDLR-RE

MPSNR 34.04 40.36 44.00 31.86 44.57 40.69 45.23

Average Time 283.81 409.48 1256.16 102.28 345.62 1393.67 71.99

Table 6.6: Comparison of the PSNR and running time (seconds) on first 8 HSIs from the

BiHID with a sampling rate of 30%.

images
LRMC[10] SNN[45] t-TNN[51] TCTF[102] PSTNN[39] TC-RE[65] TCDLR-RE

PSNR time(s) PSNR time(s) PSNR time(s) PSNR time(s) psnr time psnr time PSNR time(s)

1 39.13 2774.19 46.75 3850.68 49.98 5370.50 36.19 695.07 50.44 5083.09 46.90 37663.53 51.41 589.36

2 36.52 2822.36 43.56 3707.55 47.45 5420.99 33.75 766.11 47.92 5080.61 40.55 38794.25 48.75 585.96

3 34.62 3211.77 43.15 3839.95 47.52 5937.54 32.68 690.66 48.03 5170.47 40.88 40202.43 49.58 583.63

4 40.22 3061.57 49.21 4044.59 51.84 5478.93 38.80 697.81 52.36 5120.01 47.43 35283.78 53.76 585.62

5 35.13 3110.88 43.27 3910.30 47.90 5867.13 32.72 700.20 48.35 5128.86 44.71 36735.30 49.85 582.80

6 42.32 3032.16 51.01 4157.88 53.18 5585.10 36.87 701.17 53.72 5127.92 47.44 32960.93 55.26 581.58

7 36.63 3098.21 45.03 4042.21 49.66 5829.48 33.90 701.07 50.17 5167.41 46.49 35307.90 51.93 572.78

8 38.42 2736.59 46.02 3807.17 47.82 5087.35 34.76 681.42 48.28 5176.80 44.33 49373.34 49.29 585.03

Average 37.87 2980.97 46.00 3920.04 49.42 5572.13 34.96 704.19 49.91 5131.90 44.84 38290.18 51.23 583.35
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Table 6.7: Comparison of the PSNR and running time (seconds) on videos with a sampling

rate of 30%.

videos
LRMC[10] SNN[45] t-TNN[51] TCTF[102] PSTNN[39] TC-RE[65] TCDLR-RE

PSNR time(s) PSNR time(s) PSNR time(s) PSNR time(s) psnr time(s) psnr time(s) PSNR time(s)

Dolphin

(1920× 1080× 30)
50.94 2074.26 53.01 8563.23 50.72 6134.07 45.97 728.90 50.87 5431.55 18.42 49285.94 52.37 470.35

City

(1920× 1080× 30)
27.99 2158.47 27.83 7483.17 27.73 6077.03 26.29 744.79 28.01 5482.72 23.66 49053.57 28.91 482.77

Dock

(1920× 1080× 30)
26.87 2064.83 27.22 7080.09 27.49 5922.21 25.34 660.02 27.72 5534.49 13.34 50584.37 28.18 483.94

Ship

(1280× 720× 30)
42.09 713.79 45.46 2486.32 43.30 1186.47 34.97 327.03 43.61 1264.76 36.26 10915.48 46.41 195.41

Handrail

(1920× 1080× 30)
35.44 2019.32 36.05 7653.02 35.34 6008.16 31.32 728.98 35.65 5378.40 16.56 48916.63 37.40 487.75

Penguin

(1920× 1080× 30)
39.92 2062.64 42.80 7551.00 40.10 6097.18 34.83 736.58 40.38 5484.69 18.06 49622.41 42.85 489.57

Leg

(1280× 720× 30)
34.41 680.41 37.35 2119.52 36.17 1115.00 33.94 322.13 36.49 1272.85 23.30 10310.20 38.78 194.84

Chicken

(1920× 1080× 30)
23.89 1937.22 25.16 6603.46 24.41 5787.27 22.02 724.16 24.59 5390.03 15.45 49552.65 25.07 484.86

Bird

(1920× 1080× 30)
27.97 2001.99 29.19 6640.75 28.37 5795.14 26.65 730.30 28.64 5232.23 19.24 52635.84 29.14 487.46

Swan

(1280× 720× 30)
33.95 675.05 34.49 2092.67 33.82 1133.65 25.27 323.54 34.14 1252.79 28.24 10113.47 35.63 193.84

Average 34.35 1638.80 35.86 5827.32 34.74 4525.62 30.66 602.64 35.01 4172.45 21.25 38099.06 36.47 397.08
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Chapter 7

Conclusions and Future Works

In this dissertation, we mainly studied TV and SPV in t-product-based methods and provided

an efficient non-convex optimization for solving t-product-based tensor recovery problems.

Based on our analysis for TV and SPV, we have the following conclusions:

• TV is commonly observed in t-product-based methods, as the t-product-based rank

depends on the application of invertible linear transforms to only one dimension of

the tensor.

• Experimental results have shown that SPV is also commonly present in t-product-

based methods, mainly due to the choice of the invertible linear transform. Specifically,

we have experimentally proven that Slice Permutation Invariance (SPI) does not hold

for Discrete Cosine Transformation and Discrete Fourier Transformation.

Therefore, we proposed a new norm (Weighted Tensor Average Rank) for handling TV and

a general solver for eliminating SPV, respectively.
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In addition to addressing TV and SPV, we have also considered the issue of over-

penalization caused by the tensor nuclear norm and the lack of an efficient non-convex

optimization framework for t-product-based methods. To overcome these challenges, we

have developed a fast non-convex optimization framework called TCDLR-RE for tensor

recovery. This framework allows for the use of a wide range of surrogate functions to

improve the performance of tensor recovery. Notably, TCDLR-RE can be applied to matrix

completion problems since matrix completion is a special case of tensor completion. The

experimental results on tensor completion and tensor robust principal component analysis

have demonstrated the effectiveness of the proposed methods.

Furthermore, the proposed methods can be extended to other low-rank recovery problems,

such as robust tensor completion and tensor outlier pursuit, which involve tensor data with

various types of noise rather than just incomplete observations and sparse noise. Additionally,

the proposed methods can be combined with non-local methods [67] to achieve better

performance. However, it is important to clarify that this dissertation does not focus on

providing specific image denoising or inpainting algorithms. Instead, the primary objective

is to investigate an effective approach for defining the tensor rank function that better

characterizes the low-rank structure in tensor data. Consequently, we have chosen not

to employ any non-local strategies and have not compared the algorithms specifically

designed for image denoising or inpainting, including those based on deep learning, in

our experimental analysis throughout this dissertation. Besides, it is worth noting that the

low-rank methods discussed in this research can be broadly applied to various computer

vision problems in an unsupervised manner. Although deep learning methods have achieved

impressive achievements in various applications over the years, they still face some problems,
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such as their interpretability and the amount of time and labor required in building and

training neural networks for a specific task. Therefore, we firmly believe that research on

low-rank methods continues to hold significant value.

Although we have specifically discussed TV, SPV, and the non-convex optimization

framework in third-order t-product-based tensor recovery in this dissertation, the Weighted

Tensor Average Rank and the general solver for eliminating SPV can be generalized to

address TV and SPV in higher-order t-product-based tensor recovery by introducing more

auxiliary variables. Moreover, by utilizing the higher-order tensor product defined in [58, 48],

TCDLR-RE can be readily applied to higher-order tensor recovery problems. I plan to

explore these generalizations in my future work. In the future, I am also interested in

theoretically proving the exact recovery guarantees provided by the proposed general solver

presented in Chapter 5.

138



Bibliography

[1] B. Arad and O. Ben-Shahar. Sparse recovery of hyperspectral signal from natural rgb

images. In European Conference on Computer Vision, pages 19–34, 2016.

[2] S. P. Awate and R. T. Whitaker. Higher-order image statistics for unsupervised,

information-theoretic, adaptive, image filtering. In 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages

44–51. IEEE, 2005.

[3] D. Bertsekas. Nonlinear programming. Journal of the Operational Research Society,

48(3):334–334, 1997.

[4] J. A. Bondy, U. S. R. Murty, et al. Graph theory with applications, volume 290.

Macmillan London, 1976.

[5] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In

2005 IEEE computer society conference on computer vision and pattern recognition

(CVPR’05), volume 2, pages 60–65. Ieee, 2005.

[6] P. S. Bullen, D. S. Mitrinovic, and M. Vasic. Means and their inequalities, volume 31.

Springer Science & Business Media, 2013.

139



[7] C. Cai, G. Li, H. V. Poor, and Y. Chen. Nonconvex low-rank tensor completion from

noisy data. Operations Research, 2021.

[8] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?

Journal of the ACM (JACM), 58(3):1–37, 2011.

[9] E. J. Candes and Y. Plan. Matrix completion with noise. Proceedings of the IEEE,

98(6):925–936, 2010.

[10] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foun-

dations of Computational Mmathematics, 9(6):717–772, 2009.

[11] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimensional

scaling via an n-way generalization of “eckart-young” decomposition. Psychometrika,

35(3):283–319, 1970.

[12] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Sparse and low-rank

matrix decompositions. IFAC Proceedings Volumes, 42(10):1493–1498, 2009.

[13] S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image

denoising and compression. IEEE transactions on image processing, 9(9):1532–1546,

2000.

[14] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A.

Phan. Tensor decompositions for signal processing applications: From two-way to

multiway component analysis. IEEE Signal Processing Magazine, 32(2):145–163,

2015.

140



[15] A. L. Da Cunha, J. Zhou, and M. N. Do. The nonsubsampled contourlet transform:

theory, design, and applications. IEEE transactions on image processing, 15(10):3089–

3101, 2006.

[16] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d

transform-domain collaborative filtering. IEEE Transactions on image processing,

16(8):2080–2095, 2007.

[17] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value

decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253–

1278, 2000.

[18] J. Ding, N. Xue, Y. Long, G.-S. Xia, and Q. Lu. Learning roi transformer for oriented

object detection in aerial images. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 2849–2858, 2019.

[19] W. Dong, G. Shi, and X. Li. Nonlocal image restoration with bilateral variance

estimation: a low-rank approach. IEEE transactions on image processing, 22(2):700–

711, 2012.

[20] D. L. Donoho. De-noising by soft-thresholding. IEEE transactions on information

theory, 41(3):613–627, 1995.

[21] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.

Psychometrika, 1(3):211–218, 1936.

[22] A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-adaptive dct for high-

141



quality denoising and deblocking of grayscale and color images. IEEE transactions

on image processing, 16(5):1395–1411, 2007.

[23] L. E. Frank and J. H. Friedman. A statistical view of some chemometrics regression

tools. Technometrics, 35(2):109–135, 1993.

[24] J. H. Friedman. Fast sparse regression and classification. International Journal of

Forecasting, 28(3):722–738, 2012.

[25] S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery

via convex optimization. Inverse Problems, 27(2):025010, 2011.

[26] C. Gao, N. Wang, Q. Yu, and Z. Zhang. A feasible nonconvex relaxation approach to

feature selection. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 25, 2011.

[27] D. Geman and G. Reynolds. Constrained restoration and the recovery of discontinu-

ities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3):367–

383, 1992.

[28] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang. Weighted nuclear norm min-

imization and its applications to low level vision. International journal of computer

vision, 121(2):183–208, 2017.

[29] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with

application to image denoising. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2862–2869, 2014.

142



[30] A. Guichardet. Symmetric Hilbert spaces and related topics: Infinitely divisible

positive definite functions. Continuous products and tensor products. Gaussian and

Poissonian stochastic processes, volume 261. Springer, 2006.

[31] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products.

Journal of Mathematics and Physics, 6(1-4):164–189, 1927.

[32] F. L. Hitchcock. Multiple invariants and generalized rank of a p-way matrix or tensor.

Journal of Mathematics and Physics, 7(1-4):39–79, 1928.

[33] W. Hu, D. Tao, W. Zhang, Y. Xie, and Y. Yang. The twist tensor nuclear norm for

video completion. IEEE Transactions on Neural Networks and Learning Systems,

28(12):2961–2973, 2016.

[34] B. Huang, C. Mu, D. Goldfarb, and J. Wright. Provable models for robust low-rank

tensor completion. Pacific Journal of Optimization, 11(2):339–364, 2015.

[35] L. Huang, X. Zhao, and K. Huang. Got-10k: A large high-diversity benchmark for

generic object tracking in the wild. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 43(5):1562–1577, 2021.

[36] P. Jain and S. Oh. Provable tensor factorization with missing data. In Advances in

Neural Information Processing Systems, pages 1431–1439, 2014.

[37] H. Ji, C. Liu, Z. Shen, and Y. Xu. Robust video denoising using low rank matrix

completion. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 1791–1798, 2010.

143



[38] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, and L.-J. Deng. A novel nonconvex approach

to recover the low-tubal-rank tensor data: when t-svd meets pssv. arXiv preprint

arXiv:1712.05870, 2017.

[39] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, and L.-J. Deng. Multi-dimensional imaging

data recovery via minimizing the partial sum of tubal nuclear norm. Journal of

Computational and Applied Mathematics, 372:112680, 2020.

[40] H. A. Kiers. Towards a standardized notation and terminology in multiway analysis.

Journal of Chemometrics: A Journal of the Chemometrics Society, 14(3):105–122,

2000.

[41] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover. Third-order tensors as operators

on matrices: A theoretical and computational framework with applications in imaging.

SIAM Journal on Matrix Analysis and Applications, 34(1):148–172, 2013.

[42] M. E. Kilmer and C. D. Martin. Factorization strategies for third-order tensors. Linear

Algebra and its Applications, 435(3):641–658, 2011.

[43] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,

51(3):455–500, 2009.

[44] H. Kong, X. Xie, and Z. Lin. t-schatten-p norm for low-rank tensor recovery. IEEE

Journal of Selected Topics in Signal Processing, 12(6):1405–1419, 2018.

[45] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing

values in visual data. IEEE Transactions on Pattern Analysis Machine Intelligence,

35(1):208–220, 2013.

144



[46] R. Liu, Z. Lin, and Z. Su. Linearized alternating direction method with parallel

splitting and adaptive penalty for separable convex programs in machine learning. In

Asian Conference on Machine Learning, pages 116–132, 2013.

[47] X.-Y. Liu, S. Aeron, V. Aggarwal, and X. Wang. Low-tubal-rank tensor comple-

tion using alternating minimization. IEEE Transactions on Information Theory,

66(3):1714–1737, 2019.

[48] Y. Liu, J. Liu, Z. Long, and C. Zhu. Tensor computation for data analysis. Springer,

2022.

[49] Y. Liu and F. Shang. An efficient matrix factorization method for tensor completion.

IEEE Signal Processing Letters, 20(4):307–310, 2013.

[50] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan. Tensor robust principal component

analysis with a new tensor nuclear norm. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 42(4):925–938, 2019.

[51] C. Lu, J. Feng, Z. Lin, and S. Yan. Exact low tubal rank tensor recovery from gaussian

measurements. arXiv preprint arXiv:1806.02511, 2018.

[52] C. Lu, X. Peng, and Y. Wei. Low-rank tensor completion with a new tensor nuclear

norm induced by invertible linear transforms. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 5996–6004, 2019.

[53] C. Lu, J. Tang, S. Yan, and Z. Lin. Nonconvex nonsmooth low rank minimization

via iteratively reweighted nuclear norm. IEEE Transactions on Image Processing,

25(2):829–839, 2015.

145



[54] C. Lu, C. Zhu, C. Xu, S. Yan, and Z. Lin. Generalized singular value thresholding. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

[55] T. Lyche. Numerical linear algebra and matrix factorizations, volume 22. Springer

Nature, 2020.

[56] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models

for image restoration. In 2009 IEEE 12th international conference on computer

vision, pages 2272–2279. IEEE, 2009.

[57] D. Malioutov and A. Aravkin. Iterative log thresholding. In IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 7198–7202, 2013.

[58] C. D. Martin, R. Shafer, and B. LaRue. An order-p tensor factorization with ap-

plications in imaging. SIAM Journal on Scientific Computing, 35(1):A474–A490,

2013.

[59] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring

ecological statistics. In Proceedings Eighth IEEE International Conference on

Computer Vision., volume 2, pages 416–423, 2001.

[60] P. Moulin and J. Liu. Analysis of multiresolution image denoising schemes using

generalized gaussian and complexity priors. IEEE transactions on Information

Theory, 45(3):909–919, 1999.

[61] T.-H. Oh, Y.-W. Tai, J.-C. Bazin, H. Kim, and I. S. Kweon. Partial sum minimization

146



of singular values in robust pca: Algorithm and applications. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 38(4):744–758, 2015.

[62] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising using

scale mixtures of gaussians in the wavelet domain. IEEE Transactions on Image

processing, 12(11):1338–1351, 2003.

[63] E. Schechter. Handbook of Analysis and its Foundations. Academic Press, 1996.

[64] F. Shang, J. Cheng, Y. Liu, Z.-Q. Luo, and Z. Lin. Bilinear factor matrix norm

minimization for robust pca: Algorithms and applications. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 40(9):2066–2080, 2017.

[65] Q. Shi, Y.-M. Cheung, and J. Lou. Robust tensor svd and recovery with rank estima-

tion. IEEE Transactions on Cybernetics, 2021.

[66] Q. Shi, Y.-M. Cheung, Q. Zhao, and H. Lu. Feature extraction for incomplete data

via low-rank tensor decomposition with feature regularization. IEEE Transactions on

Neural Networks and Learning Systems, 30(6):1803–1817, 2018.

[67] L. Song, B. Du, L. Zhang, L. Zhang, J. Wu, and X. Li. Nonlocal patch based t-svd

for image inpainting: Algorithm and error analysis. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 32, 2018.

[68] Y. Su, X. Wu, and G. Liu. Nonconvex low tubal rank tensor minimization. IEEE

Access, 7:170831–170843, 2019.

[69] M. Sun, L. Zhao, J. Zheng, and J. Xu. A nonlocal denoising framework based on

147



tensor robust principal component analysis with lp norm. In 2020 IEEE International

Conference on Big Data, pages 3333–3340, 2020.

[70] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Sixth

international conference on computer vision (IEEE Cat. No. 98CH36271), pages

839–846. IEEE, 1998.

[71] J. Trzasko and A. Manduca. Highly undersampled magnetic resonance image recon-

struction via homotopic ℓ0-minimization. IEEE Transactions on Medical Imaging,

28(1):106–121, 2009.

[72] L. R. Tucker. Implications of factor analysis of three-way matrices for measurement

of change. Problems in measuring change, 15(122-137):3, 1963.

[73] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv

preprint arXiv:1011.3027, 2010.

[74] H. Wang, F. Zhang, J. Wang, T. Huang, J. Huang, and X. Liu. Generalized nonconvex

approach for low-tubal-rank tensor recovery. IEEE Transactions on Neural Networks

and Learning Systems, 2021.

[75] D. Watson and G. Philip. Triangle based interpolation. Journal of the International

Association for Mathematical Geology, 16(8):779–795, 1984.

[76] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics

& Intelligent Laboratory Systems, 2(1):37–52, 1987.

[77] J. Wright, A. Ganesh, S. R. Rao, Y. Peng, and Y. Ma. Robust principal component

148



analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In

Neural Information Processing Systems, volume 58, pages 289–298, 2009.

[78] Y. Wu, H. Tan, Y. Li, J. Zhang, and X. Chen. A fused cp factorization method for

incomplete tensors. IEEE Transactions on Neural Networks and Learning Systems,

30(3):751–764, 2018.

[79] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo, and

L. Zhang. Dota: A large-scale dataset for object detection in aerial images. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 3974–3983, 2018.

[80] Q. Xie, Q. Zhao, D. Meng, and Z. Xu. Kronecker-basis-representation based tensor

sparsity and its applications to tensor recovery. IEEE transactions on pattern analysis

and machine intelligence, 40(8):1888–1902, 2017.

[81] Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo, and L. Zhang. Multispectral images

denoising by intrinsic tensor sparsity regularization. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1692–1700, 2016.

[82] Y. Xie, S. Gu, Y. Liu, W. Zuo, W. Zhang, and L. Zhang. Weighted schatten p-norm

minimization for image denoising and background subtraction. IEEE transactions on

image processing, 25(10):4842–4857, 2016.

[83] H. Xu, C. Caramanis, and S. Sanghavi. Robust pca via outlier pursuit. In Advances

in Neural Information Processing Systems, pages 2496–2504, 2010.

[84] W.-H. Xu, X.-L. Zhao, T.-Y. Ji, J.-Q. Miao, T.-H. Ma, S. Wang, and T.-Z. Huang.

149



Laplace function based nonconvex surrogate for low-rank tensor completion. Signal

Processing: Image Communication, 73:62–69, 2019.

[85] J.-H. Yang, X.-L. Zhao, T.-Y. Ji, T.-H. Ma, and T.-Z. Huang. Low-rank tensor train for

tensor robust principal component analysis. Applied Mathematics and Computation,

367:124783, 2020.

[86] F. Zhang, J. Wang, W. Wang, and C. Xu. Low-tubal-rank plus sparse tensor recovery

with prior subspace information. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 43(10):3492–3507, 2021.

[87] T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal

of Machine Learning Research, 11(2):1081–1107, 2010.

[88] X. Zhang. Matrix analysis and applications. Tsinghua University Press, 2004.

[89] X. Zhang, D. Wang, Z. Zhou, and Y. Ma. Robust low-rank tensor recovery with

rectification and alignment. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 43(1):238–255, 2019.

[90] X. Zhang, J. Zheng, D. Wang, G. Tang, Z. Zhou, and Z. Lin. Structured sparsity opti-

mization with non-convex surrogates of ℓ2,0-norm: A unified algorithmic framework.

IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–18, 2022.

[91] X. Zhang, J. Zheng, D. Wang, and L. Zhao. Exemplar-based denoising: A unified

low-rank recovery framework. IEEE Transactions on Circuits and Systems for Video

Technology, 30(8):2538–2549, 2019.

150



[92] X. Zhang, J. Zheng, Y. Yan, L. Zhao, and R. Jiang. Joint weighted tensor schatten p-

norm and tensor l_p-norm minimization for image denoising. IEEE Access, 7:20273–

20280, 2019.

[93] X. Zhang, J. Zheng, L. Zhao, Z. Zhou, and Z. Lin. Tensor recovery with weighted

tensor average rank. IEEE Transactions on Neural Networks and Learning Systems,

2022.

[94] X. Zhang, Z. Zhou, D. Wang, and Y. Ma. Hybrid singular value thresholding for

tensor completion. In Twenty-Eighth AAAI Conference on Artificial Intelligence,

2014.

[95] X.-D. Zhang. Matrix analysis and applications. Cambridge University Press, 2017.

[96] Z. Zhang and S. Aeron. Exact tensor completion using t-SVD. IEEE Transactions on

Signal Processing, 65(6):1511–1526, 2016.

[97] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer. Novel methods for multilinear

data completion and de-noising based on tensor-svd. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3842–3849, 2014.

[98] Q. Zhao, G. Zhou, L. Zhang, A. Cichocki, and S.-I. Amari. Bayesian robust tensor

factorization for incomplete multiway data. IEEE Transactions on Neural Networks

and Learning Systems, 27(4):736–748, 2015.

[99] J. Zheng, W. Wang, X. Zhang, and X. Jiang. A novel tensor factorization-based

method with robustness to inaccurate rank estimation, 2023.

151



[100] J. Zheng, X. Zhang, W. Wang, and X. Jiang. Handling slice permutations variability

in tensor recovery. Proceedings of the AAAI Conference on Artificial Intelligence,

36(3):3499–3507, 2022.

[101] Y.-B. Zheng, T.-Z. Huang, T.-Y. Ji, X.-L. Zhao, T.-X. Jiang, and T.-H. Ma. Low-rank

tensor completion via smooth matrix factorization. Applied Mathematical Modelling,

70:677–695, 2019.

[102] P. Zhou, C. Lu, Z. Lin, and C. Zhang. Tensor factorization for low-rank tensor

completion. IEEE Transactions on Image Processing, 27(3):1152–1163, 2017.

[103] Z. Zhou, X. Li, J. Wright, E. Candes, and Y. Ma. Stable principal component pursuit.

In 2010 IEEE International Symposium on Information Theory, pages 1518–1522,

2010.

[104] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal

of computational and graphical statistics, 15(2):265–286, 2006.

152



Appendix A

A.1 Tensor Computation

A.1.1 Basic Computation

Definition A.1. [48] (Outer Product) For vectors a1 ∈ RI1 ,a2 ∈ RI2 , · · · ,ah ∈ RIh , the

outer product for vectors an ∈ RIn , n = 1, 2, · · · , h will produces a tensor as follows:

C = a1 ◦ a2 ◦ a3 ◦ · · · ◦ ah ∈ RI1×I2×···×Ih (A.1)

Definition A.2. [48] (Hadamard Product) For matrices A and B with the same size I × J ,

the Hadamard product of them is defined as follows:

C = A⊛B =



[A]1,1 [B]1,1 [A]1,2 [B]1,2 · · · [A]1,J [B]1,J

[A]2,1 [B]2,1 [A]2,2 [B]2,2 · · · [A]2,J [B]2,J
...

... . . . ...

[A]I,1 [B]I,1 [A]I,2 [B]I,2 · · · [A]I,J [B]I,J


(A.2)
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Definition A.3. [48] (Kronecker Product) The Kronecker product of matrices A ∈ RI×J

and B ∈ RK×L can be defined by

C = A⊗B =



[A]1,1B [A]1,2B · · · [A]1,J B

[A]2,1B [A]2,2B · · · [A]2,J B

...
... . . . ...

[A]I,1B [A]I,2B · · · [A]I,J B


(A.3)

Definition A.4. (Tensor Inner Product) [48] For tensors A,B ∈ CI1×I2×I3×···×Ih , the inner

product is defined as

⟨A,B⟩ =
I1∑

i1=1

I2∑
i2=1

· · ·
Ih∑

ih=1

[A]i1,i2,··· ,ihConj([B]i1,i2,··· ,ih)

A.1.2 Tensor Unfolding

Definition A.5. (Kiers Method-Based Mode-n Unfolding) [88] For an order-h tensor

A ∈ RI1×I2×I3×···×Ih , the mode-n unfolding matrix of A is defined as A(n) = unfoldn(A) ∈

RIn×
∏

i ̸=n Ii . The (in, j)-th element of A(n) is defined as

[A(n)]in,j = [A]i1,i2,··· ,ih ,

where j = in+1 +
∑h−2

p=1

[
(ih+n−p − 1)

∏h+n−p−1
q=n+1 Iq

]
, Ih+k = Ik, and ih+k = ik for k > 0.

Definition A.6. (Block Diag Matrix) [52] For tensors A ∈ RI1×I2×I3 , the block diag matrix

bdiag(A) of A is defined as

bdiag(A) =



[A]:,:,1

[A]:,:,2

. . .

[A]:,:,I3


∈ RI1I3×I2I3 .
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A.1.3 Tensor Transpose

Definition A.7. (Conjugate transpose) [50] The conjugate transpose of a tensor A ∈

CI1×I2×I3 is the tensor AT ∈ CI2×I1×I3 obtained by conjugate transposing each of the

frontal slices and then reversing the order of transposed frontal slice through positions 2 to

I3.

Definition A.8. (Conjugate transpose induced by invertible linear transform) [52] For any

invertible linear transform L such that

L(A) = A×3 L, (A.4)

which satisfies

LTL = LLT = ℓL. (A.5)

Here, ℓL > 0 is a constant. The conjugate transpose of a tensor A ∈ CI1×I2×I3 is the tensor

ATL ∈ CI2×I1×I3 that satisfies [L(ATL)]:,:,i3 = [L(A)]T:,:,i3 , i3 = 1, 2, · · · , I3.

A.1.4 Norms

Definition A.9. [48] (ℓ0 Norm) Let A ∈ RI1×I2×···×Ih , ℓ0 norm of A is defined as

∥ A ∥0= |{(i1, i2, · · · , ih)||[A]i1,i2,··· ,ih| > 0}|.

Definition A.10. [48] (ℓ1-Norm) Let A ∈ RI1×I2×···×Ih , ℓ1-norm of A is defined as

∥ A ∥1=
∑

i1,i2,··· ,ih

|[A]i1,i2,··· ,ih|.
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Definition A.11. [55] (Frobenius Norm) Let A ∈ RI1×I2×···×Ih , Frobenius norm of A is

defined as

∥ A ∥F=
√ ∑

i1,i2,··· ,ih

[A]2i1,i2,··· ,ih .

Definition A.12. [55] (ℓ2-Norm of vectors) Let a ∈ RN , ℓ2-norm of a is defined as

∥ a ∥2=
√∑

n

a2n.

Definition A.13. (Tensor tubal rank) [50] For A ∈ RI1×I2×I3 , the tensor tubal rank of

A, denoted by rankt(A), is defined as the number of non-zero singular tubes of S, where

S is from the t-SVD of A = U ∗ S ∗ VT . We can write rankt(A) = |{i|[S]i,i,: ̸= 0}| =

|{i|[S]i,i,1 ̸= 0}|. Denote σ(S) = ([S]1,1,1, [S]2,2,1, ..., [S]r,r,1)
T ,in which r = rankt(A).

Definition A.14. (Tensor spectral norm) [50] For A ∈ RI1×I2×I3 , the tensor spectral norm

is defined as ∥A∥2 = ∥bcirc(A)∥2.

Definition A.15. (Tensor average rank) [50] For A ∈ RI1×I2×I3 , the tensor average rank

of A is defined as ranka(A) = 1
I3
rank(bcirc(A)).

Definition A.16. (Tensor average nuclear norm/ Tensor nuclear norm) [50] For A ∈

RI1×I2×I3 , the tensor average nuclear norm is defined as ∥A∥∗,a = 1
I3
∥bcirc(A)∥∗. From

[50], we can know that ∥A∥∗,a = ∥A∥∗, where ∥A∥∗ is the tensor nuclear norm of A

defined as ∥A∥∗ = ∥Ā∥∗.

A.2 Specific Tensors

Definition A.17. (Identity tensor) [42] The tensor I ∈ RI×I×I3 is the tensor with the first

frontal slice being the identity matrix, and other frontal slices being all zeros.
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Definition A.18. (Orthogonal tensor) [42] A tensor Q ∈ CI×n×I3 is orthogonal if it satisfies

QT ∗Q = Q ∗QT = I .

Definition A.19. (f-diagonal tensor) [42] Tensor A is called f-diagonal if each of its frontal

slices is a diagonal matrix.

Definition A.20. (Identity tensor induced by invertible linear transform) [52] For any

invertible linear transform L defined in (A.4), if the tensor I ∈ RI×I×I3 is a tensor such

that each frontal slice of L(I) is the identity matrix, I is called as the identity tensor

induced by L.

Definition A.21. (Orthogonal tensor induced by invertible linear transform) [52] For any

invertible linear transform L defined in (A.4), a tensor Q ∈ CI×I×I3 is orthogonal if it

satisfies QTL ∗L Q = Q ∗L QTL = I .
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